2c37: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2c37 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 21:39, 8 February 2016

RNASE PH CORE OF THE ARCHAEAL EXOSOME IN COMPLEX WITH U8 RNARNASE PH CORE OF THE ARCHAEAL EXOSOME IN COMPLEX WITH U8 RNA

Structural highlights

2c37 is a 24 chain structure with sequence from Atcc 35091. The February 2007 RCSB PDB Molecule of the Month feature on Exosomes by David S. Goodsell is 10.2210/rcsb_pdb/mom_2007_2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[ECX2_SULSO] Probably involved in the 3'->5' degradation of a variety of RNA species (Potential). [ECX1_SULSO] Probably involved in the 3'->5' degradation of a variety of RNA species (Potential).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The exosome is a macromolecular complex that plays fundamental roles in the biogenesis and turnover of a large number of RNA species. Here we report the crystal structures of the Rrp41-Rrp42 core complex of the S. solfataricus exosome bound to short single-stranded RNAs and to ADP. The RNA binding cleft recognizes four nucleotides in a sequence-unspecific manner, mainly by electrostatic interactions with the phosphate groups. Interactions at the 2' hydroxyls of the sugars provide specificity for RNA over DNA. The structures show both the bound substrate and the cleaved product of the reaction, suggesting a catalytic mechanism for the 3'-5' phosphorolytic activity of the exosome.

Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core.,Lorentzen E, Conti E Mol Cell. 2005 Nov 11;20(3):473-81. PMID:16285928[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lorentzen E, Conti E. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell. 2005 Nov 11;20(3):473-81. PMID:16285928 doi:10.1016/j.molcel.2005.10.020

2c37, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA