2c37
RNASE PH CORE OF THE ARCHAEAL EXOSOME IN COMPLEX WITH U8 RNARNASE PH CORE OF THE ARCHAEAL EXOSOME IN COMPLEX WITH U8 RNA
Structural highlights
FunctionRRP42_SACS2 Non-catalytic component of the exosome, which is a complex involved in RNA degradation. Contributes to the structuring of the Rrp41 active site.[HAMAP-Rule:MF_00622][1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe exosome is a macromolecular complex that plays fundamental roles in the biogenesis and turnover of a large number of RNA species. Here we report the crystal structures of the Rrp41-Rrp42 core complex of the S. solfataricus exosome bound to short single-stranded RNAs and to ADP. The RNA binding cleft recognizes four nucleotides in a sequence-unspecific manner, mainly by electrostatic interactions with the phosphate groups. Interactions at the 2' hydroxyls of the sugars provide specificity for RNA over DNA. The structures show both the bound substrate and the cleaved product of the reaction, suggesting a catalytic mechanism for the 3'-5' phosphorolytic activity of the exosome. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core.,Lorentzen E, Conti E Mol Cell. 2005 Nov 11;20(3):473-81. PMID:16285928[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|