1p9a: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1p9a]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1P9A OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1P9A FirstGlance]. <br> | <table><tr><td colspan='2'>[[1p9a]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1P9A OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1P9A FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ook|1ook]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ook|1ook]]</td></tr> | ||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GP1BA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GP1BA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1p9a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1p9a OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1p9a RCSB], [http://www.ebi.ac.uk/pdbsum/1p9a PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1p9a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1p9a OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1p9a RCSB], [http://www.ebi.ac.uk/pdbsum/1p9a PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Disease == | == Disease == | ||
[[http://www.uniprot.org/uniprot/GP1BA_HUMAN GP1BA_HUMAN]] Genetic variations in GP1BA may be a cause of susceptibility to non-arteritic anterior ischemic optic neuropathy (NAION) [MIM:[http://omim.org/entry/258660 258660]]. NAION is an ocular disease due to ischemic injury to the optic nerve. It usually affects the optic disk and leads to visual loss and optic disk swelling of a pallid nature. Visual loss is usually sudden, or over a few days at most and is usually permanent, with some recovery possibly occurring within the first weeks or months. Patients with small disks having smaller or non-existent cups have an anatomical predisposition for non-arteritic anterior ischemic optic neuropathy. As an ischemic episode evolves, the swelling compromises circulation, with a spiral of ischemia resulting in further neuronal damage.<ref>PMID:14711733</ref> Defects in GP1BA are a cause of Bernard-Soulier syndrome (BSS) [MIM:[http://omim.org/entry/231200 231200]]; also known as giant platelet disease (GPD). BSS patients have unusually large platelets and have a clinical bleeding tendency.<ref>PMID:1730088</ref> <ref>PMID:7690774</ref> <ref>PMID:7819107</ref> <ref>PMID:7873390</ref> <ref>PMID:9639514</ref> <ref>PMID:10089893</ref> Defects in GP1BA are the cause of benign mediterranean macrothrombocytopenia (BMM) [MIM:[http://omim.org/entry/153670 153670]]; also known as autosomal dominant benign Bernard-Soulier syndrome. BMM is characterized by mild or no clinical symptoms, normal platelet function, and normal megakaryocyte count.<ref>PMID:11222377</ref> Defects in GP1BA are the cause of pseudo-von Willebrand disease (VWDP) [MIM:[http://omim.org/entry/177820 177820]]. A bleeding disorder is caused by an increased affinity of GP-Ib for soluble vWF resulting in impaired hemostatic function due to the removal of vWF from the circulation.<ref>PMID:14521605</ref> <ref>PMID:2052556</ref> <ref>PMID:8486780</ref> <ref>PMID:8384898</ref> | [[http://www.uniprot.org/uniprot/GP1BA_HUMAN GP1BA_HUMAN]] Genetic variations in GP1BA may be a cause of susceptibility to non-arteritic anterior ischemic optic neuropathy (NAION) [MIM:[http://omim.org/entry/258660 258660]]. NAION is an ocular disease due to ischemic injury to the optic nerve. It usually affects the optic disk and leads to visual loss and optic disk swelling of a pallid nature. Visual loss is usually sudden, or over a few days at most and is usually permanent, with some recovery possibly occurring within the first weeks or months. Patients with small disks having smaller or non-existent cups have an anatomical predisposition for non-arteritic anterior ischemic optic neuropathy. As an ischemic episode evolves, the swelling compromises circulation, with a spiral of ischemia resulting in further neuronal damage.<ref>PMID:14711733</ref> Defects in GP1BA are a cause of Bernard-Soulier syndrome (BSS) [MIM:[http://omim.org/entry/231200 231200]]; also known as giant platelet disease (GPD). BSS patients have unusually large platelets and have a clinical bleeding tendency.<ref>PMID:1730088</ref> <ref>PMID:7690774</ref> <ref>PMID:7819107</ref> <ref>PMID:7873390</ref> <ref>PMID:9639514</ref> <ref>PMID:10089893</ref> Defects in GP1BA are the cause of benign mediterranean macrothrombocytopenia (BMM) [MIM:[http://omim.org/entry/153670 153670]]; also known as autosomal dominant benign Bernard-Soulier syndrome. BMM is characterized by mild or no clinical symptoms, normal platelet function, and normal megakaryocyte count.<ref>PMID:11222377</ref> Defects in GP1BA are the cause of pseudo-von Willebrand disease (VWDP) [MIM:[http://omim.org/entry/177820 177820]]. A bleeding disorder is caused by an increased affinity of GP-Ib for soluble vWF resulting in impaired hemostatic function due to the removal of vWF from the circulation.<ref>PMID:14521605</ref> <ref>PMID:2052556</ref> <ref>PMID:8486780</ref> <ref>PMID:8384898</ref> | ||
Line 38: | Line 38: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Celikel, R | [[Category: Celikel, R]] | ||
[[Category: Ruggeri, Z M | [[Category: Ruggeri, Z M]] | ||
[[Category: Varughese, K I | [[Category: Varughese, K I]] | ||
[[Category: Blood clotting]] | [[Category: Blood clotting]] | ||
[[Category: Glycocalicin]] | [[Category: Glycocalicin]] | ||
[[Category: Leucine rich repeat]] | [[Category: Leucine rich repeat]] | ||
[[Category: Platelet receptor]] | [[Category: Platelet receptor]] |
Revision as of 11:25, 6 January 2015
Crystal Structure of N-Terminal Domain of Human Platelet Receptor Glycoprotein Ib-alpha at 1.7 Angstrom ResolutionCrystal Structure of N-Terminal Domain of Human Platelet Receptor Glycoprotein Ib-alpha at 1.7 Angstrom Resolution
Structural highlights
Disease[GP1BA_HUMAN] Genetic variations in GP1BA may be a cause of susceptibility to non-arteritic anterior ischemic optic neuropathy (NAION) [MIM:258660]. NAION is an ocular disease due to ischemic injury to the optic nerve. It usually affects the optic disk and leads to visual loss and optic disk swelling of a pallid nature. Visual loss is usually sudden, or over a few days at most and is usually permanent, with some recovery possibly occurring within the first weeks or months. Patients with small disks having smaller or non-existent cups have an anatomical predisposition for non-arteritic anterior ischemic optic neuropathy. As an ischemic episode evolves, the swelling compromises circulation, with a spiral of ischemia resulting in further neuronal damage.[1] Defects in GP1BA are a cause of Bernard-Soulier syndrome (BSS) [MIM:231200]; also known as giant platelet disease (GPD). BSS patients have unusually large platelets and have a clinical bleeding tendency.[2] [3] [4] [5] [6] [7] Defects in GP1BA are the cause of benign mediterranean macrothrombocytopenia (BMM) [MIM:153670]; also known as autosomal dominant benign Bernard-Soulier syndrome. BMM is characterized by mild or no clinical symptoms, normal platelet function, and normal megakaryocyte count.[8] Defects in GP1BA are the cause of pseudo-von Willebrand disease (VWDP) [MIM:177820]. A bleeding disorder is caused by an increased affinity of GP-Ib for soluble vWF resulting in impaired hemostatic function due to the removal of vWF from the circulation.[9] [10] [11] [12] Function[GP1BA_HUMAN] GP-Ib, a surface membrane protein of platelets, participates in the formation of platelet plugs by binding to the A1 domain of vWF, which is already bound to the subendothelium. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThrombin bound to platelets contributes to stop bleeding and, in pathological conditions, may cause vascular thrombosis. We have determined the structure of platelet glycoprotein Ibalpha (GpIbalpha) bound to thrombin at 2.3 angstrom resolution and defined two sites in GpIbalpha that bind to exosite II and exosite I of two distinct alpha-thrombin molecules, respectively. GpIbalpha occupancy may be sequential, as the site binding to alpha-thrombin exosite I appears to be cryptic in the unoccupied receptor but exposed when a first thrombin molecule is bound through exosite II. These interactions may modulate alpha-thrombin function by mediating GpIbalpha clustering and cleavage of protease-activated receptors, which promote platelet activation, while limiting fibrinogen clotting through blockade of exosite I. Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein Ibalpha.,Celikel R, McClintock RA, Roberts JR, Mendolicchio GL, Ware J, Varughese KI, Ruggeri ZM Science. 2003 Jul 11;301(5630):218-21. PMID:12855810[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|