4eki: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4eki FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eki OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4eki RCSB], [http://www.ebi.ac.uk/pdbsum/4eki PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4eki FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4eki OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4eki RCSB], [http://www.ebi.ac.uk/pdbsum/4eki PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/DOT1L_HUMAN DOT1L_HUMAN]] Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones. Binds to DNA. | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 07:07, 25 December 2014
Crystal Structure of DOT1L in complex with EPZ004777Crystal Structure of DOT1L in complex with EPZ004777
Structural highlights
Function[DOT1L_HUMAN] Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones. Binds to DNA. Publication Abstract from PubMedDOT1L is the human protein methyltransferase responsible for catalyzing the methylation of histone H3 on lysine 79 (H3K79). The ectopic activity of DOT1L, associated with the chromosomal translocation that is a universal hallmark of MLL-rearranged leukemia, is a required driver of leukemogenesis in this malignancy. Here, we present studies on the structure-activity relationship of aminonucleoside-based DOT1L inhibitors. Within this series, we find that improvements in target enzyme affinity and selectivity are driven entirely by diminution of the dissociation rate constant for the enzyme-inhibitor complex, leading to long residence times for the binary complex. The biochemical K(i) and residence times measured for these inhibitors correlate well with their effects on intracellular H3K79 methylation and MLL-rearranged leukemic cell killing. Crystallographic studies reveal a conformational adaptation mechanism associated with high-affinity inhibitor binding and prolonged residence time; these studies also suggest that conformational adaptation likewise plays a critical role in natural ligand interactions with the enzyme, hence, facilitating enzyme turnover. These results provide critical insights into the role of conformational adaptation in the enzymatic mechanism of catalysis and in pharmacologic intervention for DOT1L and other members of this enzyme class. Conformational Adaptation Drives Potent, Selective and Durable Inhibition of the Human Protein Methyltransferase DOT1L.,Basavapathruni A, Jin L, Daigle SR, Majer CR, Therkelsen CA, Wigle TJ, Kuntz KW, Chesworth R, Pollock RM, Scott MP, Moyer MP, Richon VM, Copeland RA, Olhava EJ Chem Biol Drug Des. 2012 Sep 15. doi: 10.1111/cbdd.12050. PMID:22978415[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|