1hw5: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1hw5]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HW5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HW5 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1hw5]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HW5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HW5 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CMP:ADENOSINE-3,5-CYCLIC-MONOPHOSPHATE'>CMP</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CMP:ADENOSINE-3,5-CYCLIC-MONOPHOSPHATE'>CMP</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1g6n|1g6n]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1g6n|1g6n]]</td></tr> | ||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CRP/CAP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CRP/CAP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hw5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hw5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hw5 RCSB], [http://www.ebi.ac.uk/pdbsum/1hw5 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hw5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hw5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hw5 RCSB], [http://www.ebi.ac.uk/pdbsum/1hw5 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/CRP_ECOLI CRP_ECOLI]] This protein complexes with cyclic AMP and binds to specific DNA sites near the promoter to regulate the transcription of several catabolite-sensitive operons. The protein induces a severe bend in the DNA. Acts as a negative regulator of its own synthesis as well as for adenylate cyclase (cyaA), which generates cAMP.<ref>PMID:2982847</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 34: | Line 36: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Chu, S Y | [[Category: Chu, S Y]] | ||
[[Category: Gilliland, G L | [[Category: Gilliland, G L]] | ||
[[Category: Gorshkova, I | [[Category: Gorshkova, I]] | ||
[[Category: Shi, Y | [[Category: Shi, Y]] | ||
[[Category: Tordova, M | [[Category: Tordova, M]] | ||
[[Category: Allostery]] | [[Category: Allostery]] | ||
[[Category: Camp]] | [[Category: Camp]] |
Revision as of 02:52, 25 December 2014
THE CAP/CRP VARIANT T127L/S128ATHE CAP/CRP VARIANT T127L/S128A
Structural highlights
Function[CRP_ECOLI] This protein complexes with cyclic AMP and binds to specific DNA sites near the promoter to regulate the transcription of several catabolite-sensitive operons. The protein induces a severe bend in the DNA. Acts as a negative regulator of its own synthesis as well as for adenylate cyclase (cyaA), which generates cAMP.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe x-ray crystal structure of the cAMP-ligated T127L/S128A double mutant of cAMP receptor protein (CRP) was determined to a resolution of 2.2 A. Although this structure is close to that of the x-ray crystal structure of cAMP-ligated CRP with one subunit in the open form and one subunit in the closed form, a bound syn-cAMP is clearly observed in the closed subunit in a third binding site in the C-terminal domain. In addition, water-mediated interactions replace the hydrogen bonding interactions between the N(6) of anti-cAMP bound in the N-terminal domains of each subunit and the OH groups of the Thr(127) and Ser(128) residues in the C alpha-helix of wild type CRP. This replacement induces flexibility in the C alpha-helix at Ala(128), which swings the C-terminal domain of the open subunit more toward the N-terminal domain in the T127L/S128A double mutant of CRP (CRP*) than is observed in the open subunit of cAMP-ligated CRP. Isothermal titration calorimetry measurements on the binding of cAMP to CRP* show that the binding mechanism changes from an exothermic independent two-site binding mechanism at pH 7.0 to an endothermic interacting two-site mechanism at pH 5.2, similar to that observed for CRP at both pH levels. Differential scanning calorimetry measurements exhibit a broadening of the thermal denaturation transition of CRP* relative to that of CRP at pH 7.0 but similar to the multipeak transitions observed for cAMP-ligated CRP. These properties and the bound syn-cAMP ligand, which has only been previously observed in the DNA bound x-ray crystal structure of cAMP-ligated CRP by Passner and Steitz (Passner, J. M., and Steitz, T. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2843-2847), imply that the cAMP-ligated CRP* structure is closer to the conformation of the allosterically activated structure than cAMP-ligated CRP. This may be induced by the unique flexibility at Ala(128) and/or by the bound syn-cAMP in the hinge region of CRP*. The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding.,Chu SY, Tordova M, Gilliland GL, Gorshkova I, Shi Y, Wang S, Schwarz FP J Biol Chem. 2001 Apr 6;276(14):11230-6. Epub 2000 Dec 21. PMID:11124966[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|