1mt6: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1mt6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MT6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1MT6 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1mt6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MT6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1MT6 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1muf|1muf]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1muf|1muf]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone-lysine_N-methyltransferase Histone-lysine N-methyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.1.43 2.1.1.43] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone-lysine_N-methyltransferase Histone-lysine N-methyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.1.43 2.1.1.43] </span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1mt6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mt6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1mt6 RCSB], [http://www.ebi.ac.uk/pdbsum/1mt6 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1mt6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mt6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1mt6 RCSB], [http://www.ebi.ac.uk/pdbsum/1mt6 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/SETD7_HUMAN SETD7_HUMAN]] Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.<ref>PMID:12588998</ref> <ref>PMID:15099517</ref> <ref>PMID:16141209</ref> <ref>PMID:17108971</ref> <ref>PMID:12540855</ref> <ref>PMID:15525938</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 35: | Line 37: | ||
[[Category: Histone-lysine N-methyltransferase]] | [[Category: Histone-lysine N-methyltransferase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Devarakonda, S | [[Category: Devarakonda, S]] | ||
[[Category: Harp, J M | [[Category: Harp, J M]] | ||
[[Category: Jacobs, S A | [[Category: Jacobs, S A]] | ||
[[Category: Khorasanizadeh, S | [[Category: Khorasanizadeh, S]] | ||
[[Category: Kim, Y | [[Category: Kim, Y]] | ||
[[Category: Rastinejad, F | [[Category: Rastinejad, F]] | ||
[[Category: Adohcy]] | [[Category: Adohcy]] | ||
[[Category: Histone lysine methyltransferase]] | [[Category: Histone lysine methyltransferase]] |
Revision as of 11:50, 24 December 2014
Structure of histone H3 K4-specific methyltransferase SET7/9 with AdoHcyStructure of histone H3 K4-specific methyltransferase SET7/9 with AdoHcy
Structural highlights
Function[SETD7_HUMAN] Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.[1] [2] [3] [4] [5] [6] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe SET domain contains the catalytic center of lysine methyltransferases that target the N-terminal tails of histones and regulate chromatin function. Here we report the structure of the SET7/9 protein in the absence and presence of its cofactor product, S-adenosyl-L-homocysteine (AdoHcy). A knot within the SET domain helps form the methyltransferase active site, where AdoHcy binds and lysine methylation is likely to occur. A structure-guided comparison of sequences within the SET protein family suggests that the knot substructure and active site environment are conserved features of the SET domain. The active site of the SET domain is constructed on a knot.,Jacobs SA, Harp JM, Devarakonda S, Kim Y, Rastinejad F, Khorasanizadeh S Nat Struct Biol. 2002 Nov;9(11):833-8. PMID:12389038[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|