3ftd: Difference between revisions
m Protected "3ftd" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Crystal structure of A. aeolicus KsgA at 1.44-Angstrom resolution== | ||
<StructureSection load='3ftd' size='340' side='right' caption='[[3ftd]], [[Resolution|resolution]] 1.44Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3ftd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FTD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3FTD FirstGlance]. <br> | |||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1qyr|1qyr]], [[1zq9|1zq9]], [[1g38|1g38]], [[3ftc|3ftc]], [[3fte|3fte]], [[3ftf|3ftf]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aq_1816, ksgA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=63363 Aquifex aeolicus])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ftd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ftd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3ftd RCSB], [http://www.ebi.ac.uk/pdbsum/3ftd PDBsum]</span></td></tr> | |||
</table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ft/3ftd_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA, and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), revealing critical structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the structures show how conformational changes that occur upon RNA binding create the cofactor-binding site. There are nine conserved functional motifs (motifs I-VIII and X) in KsgA. Prior to RNA binding, motifs I and VIII are flexible, each exhibiting two distinct conformations. Upon RNA binding, the two motifs become stabilized in one of these conformations, which is compatible with the binding of SAH. Motif X, which is also stabilized upon RNA binding, is directly involved in the binding of SAH. | |||
Structural basis for binding of RNA and cofactor by a KsgA methyltransferase.,Tu C, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X Structure. 2009 Mar 11;17(3):374-85. PMID:19278652<ref>PMID:19278652</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | |||
*[[Adenosine dimethyltransferase|Adenosine dimethyltransferase]] | |||
== | == References == | ||
[[ | <references/> | ||
__TOC__ | |||
== | </StructureSection> | ||
< | |||
[[Category: Aquifex aeolicus]] | [[Category: Aquifex aeolicus]] | ||
[[Category: Ji, X | [[Category: Ji, X]] | ||
[[Category: Tu, C | [[Category: Tu, C]] | ||
[[Category: Antibiotic resistance]] | [[Category: Antibiotic resistance]] | ||
[[Category: Ksga]] | [[Category: Ksga]] |
Revision as of 13:21, 3 December 2014
Crystal structure of A. aeolicus KsgA at 1.44-Angstrom resolutionCrystal structure of A. aeolicus KsgA at 1.44-Angstrom resolution
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAmong methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA, and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), revealing critical structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the structures show how conformational changes that occur upon RNA binding create the cofactor-binding site. There are nine conserved functional motifs (motifs I-VIII and X) in KsgA. Prior to RNA binding, motifs I and VIII are flexible, each exhibiting two distinct conformations. Upon RNA binding, the two motifs become stabilized in one of these conformations, which is compatible with the binding of SAH. Motif X, which is also stabilized upon RNA binding, is directly involved in the binding of SAH. Structural basis for binding of RNA and cofactor by a KsgA methyltransferase.,Tu C, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X Structure. 2009 Mar 11;17(3):374-85. PMID:19278652[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|