1s60: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "1s60" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:1s60.png|left|200px]]
==Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2)==
<StructureSection load='1s60' size='340' side='right' caption='[[1s60]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1s60]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Salmonella_enterica_subsp._enterica_serovar_enteritidis Salmonella enterica subsp. enterica serovar enteritidis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S60 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1S60 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=COA:COENZYME+A'>COA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1s5k|1s5k]], [[1s3z|1s3z]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aminoglycoside_N(6')-acetyltransferase Aminoglycoside N(6')-acetyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.82 2.3.1.82] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1s60 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s60 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1s60 RCSB], [http://www.ebi.ac.uk/pdbsum/1s60 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/s6/1s60_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Salmonella enterica chromosomally encoded AAC(6')-Iy has been shown to confer broad aminoglycoside resistance in strains in which the structural gene is expressed. The three-dimensional structures reported place the enzyme in the large Gcn5-related N-acetyltransferase (GNAT) superfamily. The structure of the CoA-ribostamycin ternary complex allows us to propose a chemical mechanism for the reaction, and comparison with the Mycobacterium tuberculosis AAC(2')-CoA-ribostamycin complex allows us to define how regioselectivity of acetylation is achieved. The AAC(6')-Iy dimer is most structurally similar to the Saccharomyces cerevisiae Hpa2-encoded histone acetyltransferase. We demonstrate that AAC(6')-Iy catalyzes both acetyl-CoA-dependent self-alpha-N-acetylation and acetylation of eukaryotic histone proteins and the human histone H3 N-terminal peptide. These structural and catalytic similarities lead us to propose that chromosomally encoded bacterial acetyltransferases, including those functionally identified as aminoglycoside acetyltransferases, are the evolutionary progenitors of the eukaryotic histone acetyltransferases.


{{STRUCTURE_1s60|  PDB=1s60  |  SCENE=  }}
A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones.,Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS Chem Biol. 2004 Apr;11(4):565-73. PMID:15123251<ref>PMID:15123251</ref>


===Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2)===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_15123251}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[1s60]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Salmonella_enterica_subsp._enterica_serovar_enteritidis Salmonella enterica subsp. enterica serovar enteritidis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S60 OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:015123251</ref><references group="xtra"/>
[[Category: Salmonella enterica subsp. enterica serovar enteritidis]]
[[Category: Salmonella enterica subsp. enterica serovar enteritidis]]
[[Category: Blanchard, J S.]]
[[Category: Blanchard, J S.]]

Revision as of 17:28, 29 September 2014

Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2)Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2)

Structural highlights

1s60 is a 1 chain structure with sequence from Salmonella enterica subsp. enterica serovar enteritidis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Related:1s5k, 1s3z
Activity:Aminoglycoside N(6')-acetyltransferase, with EC number 2.3.1.82
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Salmonella enterica chromosomally encoded AAC(6')-Iy has been shown to confer broad aminoglycoside resistance in strains in which the structural gene is expressed. The three-dimensional structures reported place the enzyme in the large Gcn5-related N-acetyltransferase (GNAT) superfamily. The structure of the CoA-ribostamycin ternary complex allows us to propose a chemical mechanism for the reaction, and comparison with the Mycobacterium tuberculosis AAC(2')-CoA-ribostamycin complex allows us to define how regioselectivity of acetylation is achieved. The AAC(6')-Iy dimer is most structurally similar to the Saccharomyces cerevisiae Hpa2-encoded histone acetyltransferase. We demonstrate that AAC(6')-Iy catalyzes both acetyl-CoA-dependent self-alpha-N-acetylation and acetylation of eukaryotic histone proteins and the human histone H3 N-terminal peptide. These structural and catalytic similarities lead us to propose that chromosomally encoded bacterial acetyltransferases, including those functionally identified as aminoglycoside acetyltransferases, are the evolutionary progenitors of the eukaryotic histone acetyltransferases.

A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones.,Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS Chem Biol. 2004 Apr;11(4):565-73. PMID:15123251[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol. 2004 Apr;11(4):565-73. PMID:15123251 doi:10.1016/j.chembiol.2004.03.017

1s60, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA