1s60

From Proteopedia
Jump to navigation Jump to search

Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2)Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2)

Structural highlights

1s60 is a 1 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Aminoglycoside N(6')-acetyltransferase, with EC number 2.3.1.82
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[AAC6_SALEN] Catalyzes the transfer of an acetyl group from acetyl-CoA to the 6'-amino group of aminoglycoside molecules conferring resistance to antibiotics containing the purpurosamine ring including amikacin, tobramycin, dibekacin and ribostamycin. Able to acetylate eukaryotic histone proteins.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Salmonella enterica chromosomally encoded AAC(6')-Iy has been shown to confer broad aminoglycoside resistance in strains in which the structural gene is expressed. The three-dimensional structures reported place the enzyme in the large Gcn5-related N-acetyltransferase (GNAT) superfamily. The structure of the CoA-ribostamycin ternary complex allows us to propose a chemical mechanism for the reaction, and comparison with the Mycobacterium tuberculosis AAC(2')-CoA-ribostamycin complex allows us to define how regioselectivity of acetylation is achieved. The AAC(6')-Iy dimer is most structurally similar to the Saccharomyces cerevisiae Hpa2-encoded histone acetyltransferase. We demonstrate that AAC(6')-Iy catalyzes both acetyl-CoA-dependent self-alpha-N-acetylation and acetylation of eukaryotic histone proteins and the human histone H3 N-terminal peptide. These structural and catalytic similarities lead us to propose that chromosomally encoded bacterial acetyltransferases, including those functionally identified as aminoglycoside acetyltransferases, are the evolutionary progenitors of the eukaryotic histone acetyltransferases.

A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones.,Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS Chem Biol. 2004 Apr;11(4):565-73. PMID:15123251[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Magnet S, Courvalin P, Lambert T. Activation of the cryptic aac(6')-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol. 1999 Nov;181(21):6650-5. PMID:10542165
  2. Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol. 2004 Apr;11(4):565-73. PMID:15123251 doi:10.1016/j.chembiol.2004.03.017
  3. Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol. 2004 Apr;11(4):565-73. PMID:15123251 doi:10.1016/j.chembiol.2004.03.017

1s60, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA