1ya7: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1ya7.png|left|200px]]
==Implications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complex==
<StructureSection load='1ya7' size='340' side='right' caption='[[1ya7]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1ya7]] is a 21 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermoplasma_acidophilum Thermoplasma acidophilum] and [http://en.wikipedia.org/wiki/Trypanosoma_brucei Trypanosoma brucei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YA7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1YA7 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">psmA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2303 Thermoplasma acidophilum]), psmB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2303 Thermoplasma acidophilum])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Proteasome_endopeptidase_complex Proteasome endopeptidase complex], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.25.1 3.4.25.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ya7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ya7 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ya7 RCSB], [http://www.ebi.ac.uk/pdbsum/1ya7 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ya/1ya7_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Proteasomes are cylindrical structures that function in multiple cellular processes by degrading a wide variety of cytosolic and nuclear proteins. Substrate access and product release from the enclosed catalytic chamber occurs through axial pores that are opened by activator complexes. Here, we report high-resolution structures of wild-type and mutant archaeal proteasomes bound to the activator PA26. These structures support the proposal that an ordered open conformation is required for proteolysis and that its formation can be triggered by outward displacement of surrounding residues. The structures and associated biochemical assays reveal the mechanism of binding, which involves an interaction between the PA26 C terminus and a conserved lysine. Surprisingly, biochemical observations implicate an equivalent interaction for the unrelated ATP-dependent activators PAN and PA700.


{{STRUCTURE_1ya7|  PDB=1ya7  |  SCENE=  }}
The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions.,Forster A, Masters EI, Whitby FG, Robinson H, Hill CP Mol Cell. 2005 May 27;18(5):589-99. PMID:15916965<ref>PMID:15916965</ref>


===Implications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complex===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_15916965}}
 
==About this Structure==
[[1ya7]] is a 21 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermoplasma_acidophilum Thermoplasma acidophilum] and [http://en.wikipedia.org/wiki/Trypanosoma_brucei Trypanosoma brucei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YA7 OCA].


==See Also==
==See Also==
*[[Proteasome|Proteasome]]
*[[Proteasome|Proteasome]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:015916965</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Proteasome endopeptidase complex]]
[[Category: Proteasome endopeptidase complex]]
[[Category: Thermoplasma acidophilum]]
[[Category: Thermoplasma acidophilum]]

Revision as of 00:41, 29 September 2014

Implications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complexImplications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complex

Structural highlights

1ya7 is a 21 chain structure with sequence from Thermoplasma acidophilum and Trypanosoma brucei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:psmA (Thermoplasma acidophilum), psmB (Thermoplasma acidophilum)
Activity:Proteasome endopeptidase complex, with EC number 3.4.25.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Proteasomes are cylindrical structures that function in multiple cellular processes by degrading a wide variety of cytosolic and nuclear proteins. Substrate access and product release from the enclosed catalytic chamber occurs through axial pores that are opened by activator complexes. Here, we report high-resolution structures of wild-type and mutant archaeal proteasomes bound to the activator PA26. These structures support the proposal that an ordered open conformation is required for proteolysis and that its formation can be triggered by outward displacement of surrounding residues. The structures and associated biochemical assays reveal the mechanism of binding, which involves an interaction between the PA26 C terminus and a conserved lysine. Surprisingly, biochemical observations implicate an equivalent interaction for the unrelated ATP-dependent activators PAN and PA700.

The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions.,Forster A, Masters EI, Whitby FG, Robinson H, Hill CP Mol Cell. 2005 May 27;18(5):589-99. PMID:15916965[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Forster A, Masters EI, Whitby FG, Robinson H, Hill CP. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell. 2005 May 27;18(5):589-99. PMID:15916965 doi:http://dx.doi.org/10.1016/j.molcel.2005.04.016

1ya7, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA