Implications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complexImplications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complex

Structural highlights

1ya7 is a 21 chain structure with sequence from Thermoplasma acidophilum and Trypanosoma brucei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PSA_THEAC Component of the proteasome core, a large protease complex with broad specificity involved in protein degradation. The T.acidophilum proteasome is able to cleave oligopeptides after Tyr, Leu, Phe, and to a lesser extent after Glu and Arg. Thus, displays chymotrypsin-like activity and low level of caspase-like and trypsin-like activities.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Proteasomes are cylindrical structures that function in multiple cellular processes by degrading a wide variety of cytosolic and nuclear proteins. Substrate access and product release from the enclosed catalytic chamber occurs through axial pores that are opened by activator complexes. Here, we report high-resolution structures of wild-type and mutant archaeal proteasomes bound to the activator PA26. These structures support the proposal that an ordered open conformation is required for proteolysis and that its formation can be triggered by outward displacement of surrounding residues. The structures and associated biochemical assays reveal the mechanism of binding, which involves an interaction between the PA26 C terminus and a conserved lysine. Surprisingly, biochemical observations implicate an equivalent interaction for the unrelated ATP-dependent activators PAN and PA700.

The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions.,Forster A, Masters EI, Whitby FG, Robinson H, Hill CP Mol Cell. 2005 May 27;18(5):589-99. PMID:15916965[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Akopian TN, Kisselev AF, Goldberg AL. Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem. 1997 Jan 17;272(3):1791-8. PMID:8999862
  2. Forster A, Masters EI, Whitby FG, Robinson H, Hill CP. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell. 2005 May 27;18(5):589-99. PMID:15916965 doi:http://dx.doi.org/10.1016/j.molcel.2005.04.016

1ya7, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA