1olq: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1olq.png|left|200px]]
==The Trichoderma reesei cel12a p210c mutant, structure at 1.7 a resolution.==
<StructureSection load='1olq' size='340' side='right' caption='[[1olq]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1olq]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OLQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1OLQ FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1h8v|1h8v]], [[1oa2|1oa2]], [[1olr|1olr]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1olq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1olq OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1olq RCSB], [http://www.ebi.ac.uk/pdbsum/1olq PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ol/1olq_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have extended our previous work on the structural and biochemical diversity of GH 12 homologs to include the most stable fungal GH 12 found, Humicola grisea Cel12A. The H. grisea enzyme was much more stable to irreversible thermal denaturation than the Trichoderma reesei enzyme. It had an apparent denaturation midpoint (T(m)) of 68.7 degrees C, 14.3 degrees C higher than the T. reesei enzyme. There are an additional three cysteines found in the H. grisea Cel12A enzyme. To determine their importance for thermal stability, we constructed three H. grisea Cel12A single mutants in which these cysteines were exchanged with the corresponding residues in the T. reesei enzyme. We also introduced these cysteine residues into the T. reesei enzyme. The thermal stability of these variants was determined. Substitutions at any of the three positions affected stability, with the largest effect seen in H. grisea C206P, which has a T(m) 9.1 degrees C lower than that of the wild type. The T. reesei cysteine variant that gave the largest increase in stability, with a T(m) 3.9 degrees C higher than wild type, was the P201C mutation, the converse of the destabilizing C206P mutation in H. grisea. To help rationalize the results, we have determined the crystal structure of the H. grisea enzyme and of the most stable T. reesei cysteine variant, P201C. The three cysteines in H. grisea Cel12A play an important role in the thermal stability of this protein, although they are not involved in a disulfide bond.


{{STRUCTURE_1olq|  PDB=1olq  |  SCENE=  }}
The Humicola grisea Cel12A enzyme structure at 1.2 A resolution and the impact of its free cysteine residues on thermal stability.,Sandgren M, Gualfetti PJ, Paech C, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C Protein Sci. 2003 Dec;12(12):2782-93. PMID:14627738<ref>PMID:14627738</ref>


===The Trichoderma reesei cel12a p210c mutant, structure at 1.7 a resolution.===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_14627738}}
 
==About this Structure==
[[1olq]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Hypocrea_jecorina Hypocrea jecorina]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1OLQ OCA].


==See Also==
==See Also==
*[[Glucanase|Glucanase]]
*[[Glucanase|Glucanase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:014627738</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Cellulase]]
[[Category: Cellulase]]
[[Category: Hypocrea jecorina]]
[[Category: Trichoderma reesei]]
[[Category: Berglund, G I.]]
[[Category: Berglund, G I.]]
[[Category: Gross, L S.]]
[[Category: Gross, L S.]]

Revision as of 18:25, 28 September 2014

The Trichoderma reesei cel12a p210c mutant, structure at 1.7 a resolution.The Trichoderma reesei cel12a p210c mutant, structure at 1.7 a resolution.

Structural highlights

1olq is a 2 chain structure with sequence from Trichoderma reesei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Related:1h8v, 1oa2, 1olr
Activity:Cellulase, with EC number 3.2.1.4
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have extended our previous work on the structural and biochemical diversity of GH 12 homologs to include the most stable fungal GH 12 found, Humicola grisea Cel12A. The H. grisea enzyme was much more stable to irreversible thermal denaturation than the Trichoderma reesei enzyme. It had an apparent denaturation midpoint (T(m)) of 68.7 degrees C, 14.3 degrees C higher than the T. reesei enzyme. There are an additional three cysteines found in the H. grisea Cel12A enzyme. To determine their importance for thermal stability, we constructed three H. grisea Cel12A single mutants in which these cysteines were exchanged with the corresponding residues in the T. reesei enzyme. We also introduced these cysteine residues into the T. reesei enzyme. The thermal stability of these variants was determined. Substitutions at any of the three positions affected stability, with the largest effect seen in H. grisea C206P, which has a T(m) 9.1 degrees C lower than that of the wild type. The T. reesei cysteine variant that gave the largest increase in stability, with a T(m) 3.9 degrees C higher than wild type, was the P201C mutation, the converse of the destabilizing C206P mutation in H. grisea. To help rationalize the results, we have determined the crystal structure of the H. grisea enzyme and of the most stable T. reesei cysteine variant, P201C. The three cysteines in H. grisea Cel12A play an important role in the thermal stability of this protein, although they are not involved in a disulfide bond.

The Humicola grisea Cel12A enzyme structure at 1.2 A resolution and the impact of its free cysteine residues on thermal stability.,Sandgren M, Gualfetti PJ, Paech C, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C Protein Sci. 2003 Dec;12(12):2782-93. PMID:14627738[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sandgren M, Gualfetti PJ, Paech C, Paech S, Shaw A, Gross LS, Saldajeno M, Berglund GI, Jones TA, Mitchinson C. The Humicola grisea Cel12A enzyme structure at 1.2 A resolution and the impact of its free cysteine residues on thermal stability. Protein Sci. 2003 Dec;12(12):2782-93. PMID:14627738

1olq, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA