4f5e: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4f5e]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F5E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4F5E FirstGlance]. <br>
<table><tr><td colspan='2'>[[4f5e]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F5E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4F5E FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.601&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4f5e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f5e OCA], [https://pdbe.org/4f5e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4f5e RCSB], [https://www.ebi.ac.uk/pdbsum/4f5e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4f5e ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4f5e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f5e OCA], [https://pdbe.org/4f5e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4f5e RCSB], [https://www.ebi.ac.uk/pdbsum/4f5e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4f5e ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/STING_HUMAN STING_HUMAN] Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. Acts by recognizing and binding cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced in response to DNA virus in the cytosol: upon binding of c-di-GMP or cGAMP, autoinhibition is alleviated and TMEM173/STING is able to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon and exert a potent anti-viral state. May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons. May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II). Mediates death signaling via activation of the extracellular signal-regulated kinase (ERK) pathway.<ref>PMID:18818105</ref> <ref>PMID:18724357</ref> <ref>PMID:19776740</ref> <ref>PMID:19433799</ref> <ref>PMID:21074459</ref> <ref>PMID:21947006</ref> <ref>PMID:23258412</ref>  
[https://www.uniprot.org/uniprot/STING_HUMAN STING_HUMAN] Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. Acts by recognizing and binding cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced in response to DNA virus in the cytosol: upon binding of c-di-GMP or cGAMP, autoinhibition is alleviated and TMEM173/STING is able to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon and exert a potent anti-viral state. May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons. May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II). Mediates death signaling via activation of the extracellular signal-regulated kinase (ERK) pathway.<ref>PMID:18818105</ref> <ref>PMID:18724357</ref> <ref>PMID:19776740</ref> <ref>PMID:19433799</ref> <ref>PMID:21074459</ref> <ref>PMID:21947006</ref> <ref>PMID:23258412</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
STING (stimulator of interferon genes) is an essential signaling adaptor that mediates cytokine production in response to microbial invasion by directly sensing bacterial secondary messengers such as the cyclic dinucleotide bis-(3'-5')-cyclic dimeric GMP (c-di-GMP). STING's structure and its binding mechanism to cyclic dinucleotides were unknown. We report here the crystal structures of the STING cytoplasmic domain and its complex with c-di-GMP, thus providing the structural basis for understanding STING function.
The structural basis for the sensing and binding of cyclic di-GMP by STING.,Huang YH, Liu XY, Du XX, Jiang ZF, Su XD Nat Struct Mol Biol. 2012 Jun 24;19(7):728-30. doi: 10.1038/nsmb.2333. PMID:22728659<ref>PMID:22728659</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4f5e" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 11:50, 20 March 2024

Crystal structure of ERIS/STINGCrystal structure of ERIS/STING

Structural highlights

4f5e is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.601Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STING_HUMAN Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. Acts by recognizing and binding cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced in response to DNA virus in the cytosol: upon binding of c-di-GMP or cGAMP, autoinhibition is alleviated and TMEM173/STING is able to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon and exert a potent anti-viral state. May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons. May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II). Mediates death signaling via activation of the extracellular signal-regulated kinase (ERK) pathway.[1] [2] [3] [4] [5] [6] [7]

See Also

References

  1. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008 Oct 17;29(4):538-50. doi: 10.1016/j.immuni.2008.09.003. Epub 2008 , Sep 25. PMID:18818105 doi:10.1016/j.immuni.2008.09.003
  2. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008 Oct 2;455(7213):674-8. doi: 10.1038/nature07317. Epub 2008 Aug 24. PMID:18724357 doi:10.1038/nature07317
  3. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009 Oct 8;461(7265):788-92. doi: 10.1038/nature08476. Epub 2009 Sep 23. PMID:19776740 doi:10.1038/nature08476
  4. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8653-8. doi:, 10.1073/pnas.0900850106. Epub 2009 May 11. PMID:19433799 doi:10.1073/pnas.0900850106
  5. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, Kawai T, Akira S. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010 Nov 24;33(5):765-76. doi: 10.1016/j.immuni.2010.10.013. Epub 2010 , Nov 11. PMID:21074459 doi:10.1016/j.immuni.2010.10.013
  6. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011 Sep 25;478(7370):515-8. doi: 10.1038/nature10429. PMID:21947006 doi:10.1038/nature10429
  7. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013 Feb 15;339(6121):826-30. doi: 10.1126/science.1229963. Epub 2012, Dec 20. PMID:23258412 doi:10.1126/science.1229963

4f5e, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA