3tpp: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3tpp' size='340' side='right'caption='[[3tpp]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='3tpp' size='340' side='right'caption='[[3tpp]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3tpp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3tpp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TPP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3TPP FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5HA:N-[(1S,2R)-1-BENZYL-3-(CYCLOPROPYLAMINO)-2-HYDROXYPROPYL]-5-[METHYL(METHYLSULFONYL)AMINO]-N-[(1R)-1-PHENYLETHYL]ISOPHTHALAMIDE'>5HA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=URE:UREA'>URE</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5HA:N-[(1S,2R)-1-BENZYL-3-(CYCLOPROPYLAMINO)-2-HYDROXYPROPYL]-5-[METHYL(METHYLSULFONYL)AMINO]-N-[(1R)-1-PHENYLETHYL]ISOPHTHALAMIDE'>5HA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=URE:UREA'>URE</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3tpp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tpp OCA], [https://pdbe.org/3tpp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3tpp RCSB], [https://www.ebi.ac.uk/pdbsum/3tpp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3tpp ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3tpp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tpp OCA], [https://pdbe.org/3tpp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3tpp RCSB], [https://www.ebi.ac.uk/pdbsum/3tpp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3tpp ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/BACE1_HUMAN BACE1_HUMAN] Responsible for the proteolytic processing of the amyloid precursor protein (APP). Cleaves at the N-terminus of the A-beta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated C-terminal fragment which is later released by gamma-secretase.<ref>PMID:10677483</ref> <ref>PMID:20354142</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 29: | Line 27: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Chen TT]] | |||
[[Category: Chen | [[Category: Greenblatt H]] | ||
[[Category: Greenblatt | [[Category: Li MJ]] | ||
[[Category: Li | [[Category: Silman I]] | ||
[[Category: Silman | [[Category: Sussman JL]] | ||
[[Category: Sussman | [[Category: Xu YC]] | ||
[[Category: Xu | |||
Latest revision as of 20:33, 1 November 2023
Crystal structure of BACE1 complexed with an inhibitorCrystal structure of BACE1 complexed with an inhibitor
Structural highlights
FunctionBACE1_HUMAN Responsible for the proteolytic processing of the amyloid precursor protein (APP). Cleaves at the N-terminus of the A-beta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated C-terminal fragment which is later released by gamma-secretase.[1] [2] Publication Abstract from PubMedbeta-Secretase (beta-site amyloid precursor protein-cleaving enzyme 1; BACE1) is a transmembrane aspartic protease that cleaves the beta-amyloid precursor protein en route to generation of the amyloid beta-peptide (Abeta) that is believed to be responsible for the Alzheimer's disease amyloid cascade. It is thus a prime target for the development of inhibitors which may serve as drugs in the treatment and/or prevention of Alzheimer's disease. In the following determination of the crystal structures of both apo and complexed BACE1, structural analysis of all crystal structures of BACE1 deposited in the PDB and molecular dynamics (MD) simulations of monomeric and `dimeric' BACE1 were used to study conformational changes in the active-site region of the enzyme. It was observed that a flap able to cover the active site is the most flexible region, adopting multiple conformational states in the various crystal structures. Both the presence or absence of an inhibitor within the active site and the crystal packing are shown to influence the flap's conformation. An open conformation of the flap is mostly observed in the apo structures, while direct hydrogen-bonding interaction between main-chain atoms of the flap and the inhibitor is a prerequisite for the flap to adopt a closed conformation in the crystal structures of complexes. Thus, a systematic study of the conformational flexibility of the enzyme may not only contribute to structure-based drug design of BACE1 inhibitors and of other targets with flexible conformations, but may also help to better understand the mechanistic events associated with the binding of substrates and inhibitors to the enzyme. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations.,Xu Y, Li MJ, Greenblatt H, Chen W, Paz A, Dym O, Peleg Y, Chen T, Shen X, He J, Jiang H, Silman I, Sussman JL Acta Crystallogr D Biol Crystallogr. 2012 Jan;68(Pt 1):13-25. Epub 2011 Dec 9. PMID:22194329[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|