1n4w: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @ pH 7.3 (STREPTOMYCES SP. SA-COO)== | ==ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @ pH 7.3 (STREPTOMYCES SP. SA-COO)== | ||
<StructureSection load='1n4w' size='340' side='right' caption='[[1n4w]], [[Resolution|resolution]] 0.92Å' scene=''> | <StructureSection load='1n4w' size='340' side='right'caption='[[1n4w]], [[Resolution|resolution]] 0.92Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1n4w]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Strs0 Strs0]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N4W OCA]. For a <b>guided tour on the structure components</b> use [http:// | <table><tr><td colspan='2'>[[1n4w]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Strs0 Strs0]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N4W OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1N4W FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1b4v|1b4v]], [[1b8s|1b8s]], [[1cbo|1cbo]], [[1cc2|1cc2]], [[1ijh|1ijh]], [[1n1p|1n1p]], [[1n4v|1n4v]], [[1n4u|1n4u]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1b4v|1b4v]], [[1b8s|1b8s]], [[1cbo|1cbo]], [[1cc2|1cc2]], [[1ijh|1ijh]], [[1n1p|1n1p]], [[1n4v|1n4v]], [[1n4u|1n4u]]</div></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CHOA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=74576 STRS0])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CHOA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=74576 STRS0])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cholesterol_oxidase Cholesterol oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.3.6 1.1.3.6] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cholesterol_oxidase Cholesterol oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.3.6 1.1.3.6] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1n4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n4w OCA], [http://pdbe.org/1n4w PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1n4w RCSB], [http://www.ebi.ac.uk/pdbsum/1n4w PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1n4w ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 31: | Line 31: | ||
</div> | </div> | ||
<div class="pdbe-citations 1n4w" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1n4w" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Cholesterol oxidase|Cholesterol oxidase]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 36: | Line 39: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Cholesterol oxidase]] | [[Category: Cholesterol oxidase]] | ||
[[Category: Large Structures]] | |||
[[Category: Strs0]] | [[Category: Strs0]] | ||
[[Category: Lario, P I]] | [[Category: Lario, P I]] |
Revision as of 11:45, 2 December 2020
ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @ pH 7.3 (STREPTOMYCES SP. SA-COO)ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @ pH 7.3 (STREPTOMYCES SP. SA-COO)
Structural highlights
Function[CHOD_STRS0] Bifunctional enzyme that catalyzes the oxidation of the 3-beta-hydroxy group of cholesterol and the isomerization of the double bond of the resulting product. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHydrogen atoms are a vital component of enzyme structure and function. In recent years, atomic resolution crystallography (>or=1.2 A) has been successfully used to investigate the role of the hydrogen atom in enzymatic catalysis. Here, atomic resolution crystallography was used to study the effect of pH on cholesterol oxidase from Streptomyces sp., a flavoenzyme oxidoreductase. Crystallographic observations of the anionic oxidized flavin cofactor at basic pH are consistent with the UV-visible absorption profile of the enzyme and readily explain the reversible pH-dependent loss of oxidation activity. Furthermore, a hydrogen atom, positioned at an unusually short distance from the main chain carbonyl oxygen of Met122 at high pH, was observed, suggesting a previously unknown mechanism of cofactor stabilization. This study shows how a redox active site responds to changes in the enzyme's environment and how these changes are able to influence the mechanism of enzymatic catalysis. Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment.,Lyubimov AY, Lario PI, Moustafa I, Vrielink A Nat Chem Biol. 2006 May;2(5):259-64. Epub 2006 Apr 9. PMID:16604066[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|