1s32: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Molecular Recognition of the Nucleosomal 'Supergroove'== | ==Molecular Recognition of the Nucleosomal 'Supergroove'== | ||
<StructureSection load='1s32' size='340' side='right' caption='[[1s32]], [[Resolution|resolution]] 2.05Å' scene=''> | <StructureSection load='1s32' size='340' side='right' caption='[[1s32]], [[Resolution|resolution]] 2.05Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1s32]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S32 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1S32 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1s32]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S32 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1S32 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand= | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ABU:GAMMA-AMINO-BUTANOIC+ACID'>ABU</scene>, <scene name='pdbligand=BAL:BETA-ALANINE'>BAL</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=DIB:3-AMINO-(DIMETHYLPROPYLAMINE)'>DIB</scene>, <scene name='pdbligand=IMT:4-AMINO-(1-METHYLIMIDAZOLE)-2-CARBOXYLIC+ACID'>IMT</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=OGG:2-(2-CARBAMOYLMETHOXY-ETHOXY)-ACETAMIDE'>OGG</scene>, <scene name='pdbligand=PYB:4-AMINO-(1-METHYLPYRROLE)-2-CARBOXYLIC+ACID'>PYB</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m1a|1m1a]], [[1m19|1m19]], [[1m18|1m18]], [[1kx5|1kx5]], [[1kx3|1kx3]], [[1aoi|1aoi]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m1a|1m1a]], [[1m19|1m19]], [[1m18|1m18]], [[1kx5|1kx5]], [[1kx3|1kx3]], [[1aoi|1aoi]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Histone H3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H2A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H2B.1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Histone H3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H2A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Histone H2B.1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1s32 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s32 OCA], [http://pdbe.org/1s32 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1s32 RCSB], [http://www.ebi.ac.uk/pdbsum/1s32 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1s32 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s32 OCA], [http://pdbe.org/1s32 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1s32 RCSB], [http://www.ebi.ac.uk/pdbsum/1s32 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1s32 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 13: | Line 13: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/s3/1s32_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/s3/1s32_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> |
Revision as of 09:36, 8 March 2018
Molecular Recognition of the Nucleosomal 'Supergroove'Molecular Recognition of the Nucleosomal 'Supergroove'
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedChromatin is the physiological substrate in all processes involving eukaryotic DNA. By organizing 147 base pairs of DNA into two tight superhelical coils, the nucleosome generates an architecture where DNA regions that are 80 base pairs apart on linear DNA are brought into close proximity, resulting in the formation of DNA "supergrooves." Here, we report the design of a hairpin polyamide dimer that targets one such supergroove. The 2-A crystal structure of the nucleosome-polyamide complex shows that the bivalent "clamp" effectively crosslinks the two gyres of the DNA superhelix, improves positioning of the DNA on the histone octamer, and stabilizes the nucleosome against dissociation. Our findings identify nucleosomal supergrooves as platforms for molecular recognition of condensed eukaryotic DNA. In vivo, supergrooves may foster synergistic protein-protein interactions by bringing two regulatory elements into juxtaposition. Because supergroove formation is independent of the translational position of the DNA on the histone octamer, accurate nucleosome positioning over regulatory elements is not required for supergroove participation in eukaryotic gene regulation. Molecular recognition of the nucleosomal "supergroove".,Edayathumangalam RS, Weyermann P, Gottesfeld JM, Dervan PB, Luger K Proc Natl Acad Sci U S A. 2004 May 4;101(18):6864-9. Epub 2004 Apr 20. PMID:15100411[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|