1s32
Molecular Recognition of the Nucleosomal 'Supergroove'Molecular Recognition of the Nucleosomal 'Supergroove'
Structural highlights
FunctionH32_XENLA Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedChromatin is the physiological substrate in all processes involving eukaryotic DNA. By organizing 147 base pairs of DNA into two tight superhelical coils, the nucleosome generates an architecture where DNA regions that are 80 base pairs apart on linear DNA are brought into close proximity, resulting in the formation of DNA "supergrooves." Here, we report the design of a hairpin polyamide dimer that targets one such supergroove. The 2-A crystal structure of the nucleosome-polyamide complex shows that the bivalent "clamp" effectively crosslinks the two gyres of the DNA superhelix, improves positioning of the DNA on the histone octamer, and stabilizes the nucleosome against dissociation. Our findings identify nucleosomal supergrooves as platforms for molecular recognition of condensed eukaryotic DNA. In vivo, supergrooves may foster synergistic protein-protein interactions by bringing two regulatory elements into juxtaposition. Because supergroove formation is independent of the translational position of the DNA on the histone octamer, accurate nucleosome positioning over regulatory elements is not required for supergroove participation in eukaryotic gene regulation. Molecular recognition of the nucleosomal "supergroove".,Edayathumangalam RS, Weyermann P, Gottesfeld JM, Dervan PB, Luger K Proc Natl Acad Sci U S A. 2004 May 4;101(18):6864-9. Epub 2004 Apr 20. PMID:15100411[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|