1smd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Alpha-amylase Alpha-amylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.1 3.2.1.1] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Alpha-amylase Alpha-amylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.1 3.2.1.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1smd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1smd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1smd RCSB], [http://www.ebi.ac.uk/pdbsum/1smd PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1smd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1smd OCA], [http://pdbe.org/1smd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1smd RCSB], [http://www.ebi.ac.uk/pdbsum/1smd PDBsum]</span></td></tr>
</table>
</table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
Line 26: Line 26:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 1smd" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Revision as of 10:08, 10 September 2015

HUMAN SALIVARY AMYLASEHUMAN SALIVARY AMYLASE

Structural highlights

1smd is a 1 chain structure with sequence from Homo sapiens. The February 2006 RCSB PDB Molecule of the Month feature on Alpha-amylase by David S. Goodsell is 10.2210/rcsb_pdb/mom_2006_2. The June 2011 RCSB PDB Molecule of the Month feature on Glucansucrase by David Goodsell is 10.2210/rcsb_pdb/mom_2011_6. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Activity:Alpha-amylase, with EC number 3.2.1.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Salivary alpha-amylase, a major component of human saliva, plays a role in the initial digestion of starch and may be involved in the colonization of bacteria involved in early dental plaque formation. The three-dimensional atomic structure of salivary amylase has been determined to understand the structure-function relationships of this enzyme. This structure was refined to an R value of 18.4% with 496 amino-acid residues, one calcium ion, one chloride ion and 170 water molecules. Salivary amylase folds into a multidomain structure consisting of three domains, A, B and C. Domain A has a (beta/alpha)(8-) barrel structure, domain B has no definite topology and domain C has a Greek-key barrel structure. The Ca(2+) ion is bound to Asnl00, Arg158, Asp167, His201 and three water molecules. The Cl(-) ion is bound to Arg195, Asn298 and Arg337 and one water molecule. The highly mobile glycine-rich loop 304-310 may act as a gateway for substrate binding and be involved in a 'trap-release' mechanism in the hydrolysis of substrates. Strategic placement of calcium and chloride ions, as well as histidine and tryptophan residues may play a role in differentiating between the glycone and aglycone ends of the polysaccharide substrates. Salivary amylase also possesses a suitable site for binding to enamel surfaces and provides potential sites for the binding of bacterial adhesins.

Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity.,Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435-46. PMID:15299664[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435-46. PMID:15299664 doi:10.1107/S0907444995014119

1smd, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA