1smd

From Proteopedia
Jump to navigation Jump to search

HUMAN SALIVARY AMYLASEHUMAN SALIVARY AMYLASE

Structural highlights

1smd is a 1 chain structure with sequence from Homo sapiens. The February 2006 RCSB PDB Molecule of the Month feature on Alpha-amylase by David S. Goodsell is 10.2210/rcsb_pdb/mom_2006_2. The June 2011 RCSB PDB Molecule of the Month feature on Glucansucrase by David Goodsell is 10.2210/rcsb_pdb/mom_2011_6. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AMY1A_HUMAN Calcium-binding enzyme that initiates starch digestion in the oral cavity (PubMed:12527308). Catalyzes the hydrolysis of internal (1->4)-alpha-D-glucosidic bonds, yielding a mixture of maltose, isomaltose, small amounts of glucose as well as small linear and branched oligosaccharides called dextrins (PubMed:12527308).[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Salivary alpha-amylase, a major component of human saliva, plays a role in the initial digestion of starch and may be involved in the colonization of bacteria involved in early dental plaque formation. The three-dimensional atomic structure of salivary amylase has been determined to understand the structure-function relationships of this enzyme. This structure was refined to an R value of 18.4% with 496 amino-acid residues, one calcium ion, one chloride ion and 170 water molecules. Salivary amylase folds into a multidomain structure consisting of three domains, A, B and C. Domain A has a (beta/alpha)(8-) barrel structure, domain B has no definite topology and domain C has a Greek-key barrel structure. The Ca(2+) ion is bound to Asnl00, Arg158, Asp167, His201 and three water molecules. The Cl(-) ion is bound to Arg195, Asn298 and Arg337 and one water molecule. The highly mobile glycine-rich loop 304-310 may act as a gateway for substrate binding and be involved in a 'trap-release' mechanism in the hydrolysis of substrates. Strategic placement of calcium and chloride ions, as well as histidine and tryptophan residues may play a role in differentiating between the glycone and aglycone ends of the polysaccharide substrates. Salivary amylase also possesses a suitable site for binding to enamel surfaces and provides potential sites for the binding of bacterial adhesins.

Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity.,Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435-46. PMID:15299664[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ramasubbu N, Ragunath C, Mishra PJ. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. J Mol Biol. 2003 Jan 31;325(5):1061-76. PMID:12527308
  2. Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435-46. PMID:15299664 doi:10.1107/S0907444995014119

1smd, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA