1m56: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1m56]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhodobacter_sphaeroides Rhodobacter sphaeroides]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M56 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M56 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1m56]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhodobacter_sphaeroides Rhodobacter sphaeroides]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M56 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1M56 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEH:DI-STEAROYL-3-SN-PHOSPHATIDYLETHANOLAMINE'>PEH</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEH:DI-STEAROYL-3-SN-PHOSPHATIDYLETHANOLAMINE'>PEH</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m57|1m57]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m57|1m57]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cytochrome-c_oxidase Cytochrome-c oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.9.3.1 1.9.3.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cytochrome-c_oxidase Cytochrome-c oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.9.3.1 1.9.3.1] </span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m56 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m56 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m56 RCSB], [http://www.ebi.ac.uk/pdbsum/1m56 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1m56 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m56 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1m56 RCSB], [http://www.ebi.ac.uk/pdbsum/1m56 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/COX1_RHOSH COX1_RHOSH]] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. [[http://www.uniprot.org/uniprot/COX2_RHOSH COX2_RHOSH]] Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 35: | Line 37: | ||
[[Category: Cytochrome-c oxidase]] | [[Category: Cytochrome-c oxidase]] | ||
[[Category: Rhodobacter sphaeroides]] | [[Category: Rhodobacter sphaeroides]] | ||
[[Category: Abramson, J | [[Category: Abramson, J]] | ||
[[Category: Brezezinski, P | [[Category: Brezezinski, P]] | ||
[[Category: Iwata, S | [[Category: Iwata, S]] | ||
[[Category: Larsson, G | [[Category: Larsson, G]] | ||
[[Category: Svensson-Ek, M | [[Category: Svensson-Ek, M]] | ||
[[Category: Tornroth, S | [[Category: Tornroth, S]] | ||
[[Category: Membrane protein]] | [[Category: Membrane protein]] | ||
[[Category: Oxidoreductase]] | [[Category: Oxidoreductase]] |
Revision as of 18:14, 25 December 2014
Structure of cytochrome c oxidase from Rhodobactor sphaeroides (Wild Type)Structure of cytochrome c oxidase from Rhodobactor sphaeroides (Wild Type)
Structural highlights
Function[COX1_RHOSH] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Co I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme a of subunit 1 to the bimetallic center formed by heme a3 and copper B. This cytochrome c oxidase shows proton pump activity across the membrane in addition to the electron transfer. [COX2_RHOSH] Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structure of cytochrome c oxidase from Rhodobacter sphaeroides has been solved at 2.3/2.8A (anisotropic resolution). This high-resolution structure revealed atomic details of a bacterial terminal oxidase including water molecule positions and a potential oxygen pathway, which has not been reported in other oxidase structures. A comparative study of the wild-type and the EQ(I-286) mutant enzyme revealed structural rearrangements around E(I-286) that could be crucial for proton transfer in this enzyme. In the structure of the mutant enzyme, EQ(I-286), which cannot transfer protons during oxygen reduction, the side-chain of Q(I-286) does not have the hydrogen bond to the carbonyl oxygen of M(I-107) that is seen in the wild-type structure. Furthermore, the Q(I-286) mutant has a different arrangement of water molecules and residues in the vicinity of the Q side-chain. These differences between the structures could reflect conformational changes that take place upon deprotonation of E(I-286) during turnover of the wild-type enzyme, which could be part of the proton-pumping machinery of the enzyme. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides.,Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S J Mol Biol. 2002 Aug 9;321(2):329-39. PMID:12144789[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|