4jz3: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of the chicken c-Src-SH3 domain intertwined dimer== | |||
<StructureSection load='4jz3' size='340' side='right' caption='[[4jz3]], [[Resolution|resolution]] 1.85Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4jz3]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Chick Chick]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JZ3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4JZ3 FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3fj5|3fj5]], [[4jz4|4jz4]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SRC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9031 CHICK])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4jz3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4jz3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4jz3 RCSB], [http://www.ebi.ac.uk/pdbsum/4jz3 PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging beta-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation. | |||
Electrostatic Effects in the Folding of the SH3 Domain of the c-Src Tyrosine Kinase: pH-Dependence in 3D-Domain Swapping and Amyloid Formation.,Bacarizo J, Martinez-Rodriguez S, Martin-Garcia JM, Andujar-Sanchez M, Ortiz-Salmeron E, Neira JL, Camara-Artigas A PLoS One. 2014 Dec 9;9(12):e113224. doi: 10.1371/journal.pone.0113224., eCollection 2014. PMID:25490095<ref>PMID:25490095</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== | ==See Also== | ||
<references | *[[Tyrosine kinase|Tyrosine kinase]] | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Chick]] | |||
[[Category: Non-specific protein-tyrosine kinase]] | [[Category: Non-specific protein-tyrosine kinase]] | ||
[[Category: Camara-Artigas, A | [[Category: Camara-Artigas, A]] | ||
[[Category: Beta shandwich]] | [[Category: Beta shandwich]] | ||
[[Category: Sh3]] | [[Category: Sh3]] | ||
[[Category: Signaling pathway]] | [[Category: Signaling pathway]] | ||
[[Category: Signaling protein]] | [[Category: Signaling protein]] |
Revision as of 12:26, 17 December 2014
Crystal structure of the chicken c-Src-SH3 domain intertwined dimerCrystal structure of the chicken c-Src-SH3 domain intertwined dimer
Structural highlights
Publication Abstract from PubMedThe SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging beta-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation. Electrostatic Effects in the Folding of the SH3 Domain of the c-Src Tyrosine Kinase: pH-Dependence in 3D-Domain Swapping and Amyloid Formation.,Bacarizo J, Martinez-Rodriguez S, Martin-Garcia JM, Andujar-Sanchez M, Ortiz-Salmeron E, Neira JL, Camara-Artigas A PLoS One. 2014 Dec 9;9(12):e113224. doi: 10.1371/journal.pone.0113224., eCollection 2014. PMID:25490095[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|