1o23: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_1o23|  PDB=1o23  |  SCENE=  }}
==CRYSTAL STRUCTURE OF LACTOSE SYNTHASE IN THE PRESENCE OF UDP-GLUCOSE==
===CRYSTAL STRUCTURE OF LACTOSE SYNTHASE IN THE PRESENCE OF UDP-GLUCOSE===
<StructureSection load='1o23' size='340' side='right' caption='[[1o23]], [[Resolution|resolution]] 2.32&Aring;' scene=''>
{{ABSTRACT_PUBMED_11485999}}
== Structural highlights ==
<table><tr><td colspan='2'>[[1o23]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. This structure supersedes the now removed PDB entries  and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1jnc 1jnc]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1O23 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1O23 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene>, <scene name='pdbligand=UPG:URIDINE-5-DIPHOSPHATE-GLUCOSE'>UPG</scene><br>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">LALBA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 Mus musculus]), BETA1,4-GALACTOSYLTRANSFERASE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9913 Bos taurus])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/N-acetyllactosamine_synthase N-acetyllactosamine synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.90 2.4.1.90] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1o23 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1o23 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1o23 RCSB], [http://www.ebi.ac.uk/pdbsum/1o23 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/o2/1o23_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
beta-1,4-Galactosyltransferase 1 (Gal-T1) transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc), which constitutes its normal galactosyltransferase (Gal-T) activity. In the presence of alpha-lactalbumin (LA), it transfers Gal to Glc, which is its lactose synthase (LS) activity. It also transfers glucose (Glc) from UDP-Glc to GlcNAc, constituting the glucosyltransferase (Glc-T) activity, albeit at an efficiency of only 0.3-0.4% of Gal-T activity. In the present study, we show that LA increases this activity almost 30-fold. It also enhances the Glc-T activity toward various N-acyl substituted glucosamine acceptors. Steady state kinetic studies of Glc-T reaction show that the K(m) for the donor and acceptor substrates are high in the absence of LA. In the presence of LA, the K(m) for the acceptor substrate is reduced 30-fold, whereas for UDP-Glc it is reduced only 5-fold. In order to understand this property, we have determined the crystal structures of the Gal-T1.LA complex with UDP-Glc x Mn(2+) and with N-butanoyl-glucosamine (N-butanoyl-GlcN), a preferred sugar acceptor in the Glc-T activity. The crystal structures reveal that although the binding of UDP-Glc is quite similar to UDP-Gal, there are few significant differences observed in the hydrogen bonding interactions between UDP-Glc and Gal-T1. Based on the present kinetic and crystal structural studies, a possible explanation for the role of LA in the Glc-T activity has been proposed.


==Function==
alpha-Lactalbumin (LA) stimulates milk beta-1,4-galactosyltransferase I (beta 4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. Crystal structure of beta 4Gal-T1 x LA complex with UDP-Glc.,Ramakrishnan B, Shah PS, Qasba PK J Biol Chem. 2001 Oct 5;276(40):37665-71. Epub 2001 Aug 2. PMID:11485999<ref>PMID:11485999</ref>
[[http://www.uniprot.org/uniprot/LALBA_MOUSE LALBA_MOUSE]] Regulatory subunit of lactose synthase, changes the substrate specificity of galactosyltransferase in the mammary gland making glucose a good acceptor substrate for this enzyme. This enables LS to synthesize lactose, the major carbohydrate component of milk. In other tissues, galactosyltransferase transfers galactose onto the N-acetylglucosamine of the oligosaccharide chains in glycoproteins. [[http://www.uniprot.org/uniprot/B4GT1_BOVIN B4GT1_BOVIN]] The Golgi complex form catalyzes the production of lactose in the lactating mammary gland and could also be responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids. The cell surface form functions as a recognition molecule during a variety of cell to cell and cell to matrix interactions, as those occurring during development and egg fertilization, by binding to specific oligosaccharide ligands on opposing cells or in the extracellular matrix.  


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[1o23]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. This structure supersedes the now removed PDB entries  and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1jnc 1jnc]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1O23 OCA].
</div>


==See Also==
==See Also==
*[[Glycosyltransferase|Glycosyltransferase]]
*[[Glycosyltransferase|Glycosyltransferase]]
*[[Lactalbumin|Lactalbumin]]
*[[Lactalbumin|Lactalbumin]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:011485999</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Bos taurus]]
[[Category: Bos taurus]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]

Revision as of 07:12, 3 October 2014

CRYSTAL STRUCTURE OF LACTOSE SYNTHASE IN THE PRESENCE OF UDP-GLUCOSECRYSTAL STRUCTURE OF LACTOSE SYNTHASE IN THE PRESENCE OF UDP-GLUCOSE

Structural highlights

1o23 is a 4 chain structure with sequence from Bos taurus and Mus musculus. This structure supersedes the now removed PDB entries and 1jnc. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , ,
Gene:LALBA (Mus musculus), BETA1,4-GALACTOSYLTRANSFERASE (Bos taurus)
Activity:N-acetyllactosamine synthase, with EC number 2.4.1.90
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

beta-1,4-Galactosyltransferase 1 (Gal-T1) transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc), which constitutes its normal galactosyltransferase (Gal-T) activity. In the presence of alpha-lactalbumin (LA), it transfers Gal to Glc, which is its lactose synthase (LS) activity. It also transfers glucose (Glc) from UDP-Glc to GlcNAc, constituting the glucosyltransferase (Glc-T) activity, albeit at an efficiency of only 0.3-0.4% of Gal-T activity. In the present study, we show that LA increases this activity almost 30-fold. It also enhances the Glc-T activity toward various N-acyl substituted glucosamine acceptors. Steady state kinetic studies of Glc-T reaction show that the K(m) for the donor and acceptor substrates are high in the absence of LA. In the presence of LA, the K(m) for the acceptor substrate is reduced 30-fold, whereas for UDP-Glc it is reduced only 5-fold. In order to understand this property, we have determined the crystal structures of the Gal-T1.LA complex with UDP-Glc x Mn(2+) and with N-butanoyl-glucosamine (N-butanoyl-GlcN), a preferred sugar acceptor in the Glc-T activity. The crystal structures reveal that although the binding of UDP-Glc is quite similar to UDP-Gal, there are few significant differences observed in the hydrogen bonding interactions between UDP-Glc and Gal-T1. Based on the present kinetic and crystal structural studies, a possible explanation for the role of LA in the Glc-T activity has been proposed.

alpha-Lactalbumin (LA) stimulates milk beta-1,4-galactosyltransferase I (beta 4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. Crystal structure of beta 4Gal-T1 x LA complex with UDP-Glc.,Ramakrishnan B, Shah PS, Qasba PK J Biol Chem. 2001 Oct 5;276(40):37665-71. Epub 2001 Aug 2. PMID:11485999[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ramakrishnan B, Shah PS, Qasba PK. alpha-Lactalbumin (LA) stimulates milk beta-1,4-galactosyltransferase I (beta 4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. Crystal structure of beta 4Gal-T1 x LA complex with UDP-Glc. J Biol Chem. 2001 Oct 5;276(40):37665-71. Epub 2001 Aug 2. PMID:11485999 doi:10.1074/jbc.M102458200

1o23, resolution 2.32Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA