2oy0: Difference between revisions
m Protected "2oy0" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Crystal structure of the West Nile virus methyltransferase== | ||
<StructureSection load='2oy0' size='340' side='right' caption='[[2oy0]], [[Resolution|resolution]] 2.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2oy0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/West_nile_virus West nile virus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OY0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2OY0 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">virus ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11082 West Nile virus])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2oy0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2oy0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2oy0 RCSB], [http://www.ebi.ac.uk/pdbsum/2oy0 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oy/2oy0_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy. | |||
Structure and function of flavivirus NS5 methyltransferase.,Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY, Li H J Virol. 2007 Apr;81(8):3891-903. Epub 2007 Jan 31. PMID:17267492<ref>PMID:17267492</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: West nile virus]] | [[Category: West nile virus]] | ||
[[Category: Guo, Y.]] | [[Category: Guo, Y.]] |
Revision as of 23:01, 30 September 2014
Crystal structure of the West Nile virus methyltransferaseCrystal structure of the West Nile virus methyltransferase
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy. Structure and function of flavivirus NS5 methyltransferase.,Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY, Li H J Virol. 2007 Apr;81(8):3891-903. Epub 2007 Jan 31. PMID:17267492[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|