1idy: Difference between revisions
m Protected "1idy" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==STRUCTURE OF MYB TRANSFORMING PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE== | ||
<StructureSection load='1idy' size='340' side='right' caption='[[1idy]], [[NMR_Ensembles_of_Models | 1 NMR models]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1idy]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IDY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1IDY FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1idz|1idz]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1idy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1idy OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1idy RCSB], [http://www.ebi.ac.uk/pdbsum/1idy PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/id/1idy_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A small globular protein, the third repeat of the c-Myb DNA-binding domain, which is composed of 54 amino acid residues, was engineered so as to understand the structural uniqueness of native proteins. This small protein has three alpha-helices that form a helix-turn-helix structure, which is maintained by the hydrophobic core with three Ile residues. One of the mutant proteins, with two of the buried Ile (Ile-155 and Ile-181) substituted with Leu residues, showed multiple conformations, as monitored by heteronuclear magnetic resonance spectroscopy for 13C- and 15N-labeled proteins. The increase in the side-chain conformational entropy, caused by changing the Ile to a Leu residue on an alpha-helix, could engender the lack of structural uniqueness. In native proteins, the conformations of not only the beta-branched side chains, but also those of the neighboring bulky side chains, can be greatly restricted, depending upon the local backbone structure. | |||
A small engineered protein lacks structural uniqueness by increasing the side-chain conformational entropy.,Furukawa K, Oda M, Nakamura H Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13583-8. PMID:8942977<ref>PMID:8942977</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | |||
*[[Transcriptional activator|Transcriptional activator]] | |||
== | == References == | ||
[[ | <references/> | ||
__TOC__ | |||
== | </StructureSection> | ||
< | |||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Furukawa, K.]] | [[Category: Furukawa, K.]] |
Revision as of 13:54, 28 September 2014
STRUCTURE OF MYB TRANSFORMING PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURESTRUCTURE OF MYB TRANSFORMING PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA small globular protein, the third repeat of the c-Myb DNA-binding domain, which is composed of 54 amino acid residues, was engineered so as to understand the structural uniqueness of native proteins. This small protein has three alpha-helices that form a helix-turn-helix structure, which is maintained by the hydrophobic core with three Ile residues. One of the mutant proteins, with two of the buried Ile (Ile-155 and Ile-181) substituted with Leu residues, showed multiple conformations, as monitored by heteronuclear magnetic resonance spectroscopy for 13C- and 15N-labeled proteins. The increase in the side-chain conformational entropy, caused by changing the Ile to a Leu residue on an alpha-helix, could engender the lack of structural uniqueness. In native proteins, the conformations of not only the beta-branched side chains, but also those of the neighboring bulky side chains, can be greatly restricted, depending upon the local backbone structure. A small engineered protein lacks structural uniqueness by increasing the side-chain conformational entropy.,Furukawa K, Oda M, Nakamura H Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13583-8. PMID:8942977[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|