1v54: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1v54.png|left|200px]]
==Bovine heart cytochrome c oxidase at the fully oxidized state==
<StructureSection load='1v54' size='340' side='right' caption='[[1v54]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1v54]] is a 26 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V54 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1V54 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=CHD:CHOLIC+ACID'>CHD</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=CUA:DINUCLEAR+COPPER+ION'>CUA</scene>, <scene name='pdbligand=DMU:DECYL-BETA-D-MALTOPYRANOSIDE'>DMU</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PEK:(1S)-2-{[(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-1-[(STEAROYLOXY)METHYL]ETHYL+(5E,8E,11E,14E)-ICOSA-5,8,11,14-TETRAENOATE'>PEK</scene>, <scene name='pdbligand=PGV:(1R)-2-{[{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+(11E)-OCTADEC-11-ENOATE'>PGV</scene>, <scene name='pdbligand=PSC:(7R,17E,20E)-4-HYDROXY-N,N,N-TRIMETHYL-9-OXO-7-[(PALMITOYLOXY)METHYL]-3,5,8-TRIOXA-4-PHOSPHAHEXACOSA-17,20-DIEN-1-AMINIUM+4-OXIDE'>PSC</scene>, <scene name='pdbligand=TGL:TRISTEAROYLGLYCEROL'>TGL</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene>, <scene name='pdbligand=SAC:N-ACETYL-SERINE'>SAC</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1v55|1v55]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cytochrome-c_oxidase Cytochrome-c oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.9.3.1 1.9.3.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1v54 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1v54 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1v54 RCSB], [http://www.ebi.ac.uk/pdbsum/1v54 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v5/1v54_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Mitochondrial cytochrome c oxidase plays an essential role in aerobic cellular respiration, reducing dioxygen to water in a process coupled with the pumping of protons across the mitochondrial inner membrane. An aspartate residue, Asp-51, located near the enzyme surface, undergoes a redox-coupled x-ray structural change, which is suggestive of a role for this residue in redox-driven proton pumping. However, functional or mechanistic evidence for the involvement of this residue in proton pumping has not yet been obtained. We report that the Asp-51 --&gt; Asn mutation of the bovine enzyme abolishes its proton-pumping function without impairment of the dioxygen reduction activity. Improved x-ray structures (at 1.8/1.9-A resolution in the fully oxidized/reduced states) show that the net positive charge created upon oxidation of the low-spin heme of the enzyme drives the active proton transport from the interior of the mitochondria to Asp-51 across the enzyme via a water channel and a hydrogen-bond network, located in tandem, and that the enzyme reduction induces proton ejection from the aspartate to the mitochondrial exterior. A peptide bond in the hydrogen-bond network critically inhibits reverse proton transfer through the network. A redox-coupled change in the capacity of the water channel, induced by the hydroxyfarnesylethyl group of the low-spin heme, suggests that the channel functions as an effective proton-collecting region. Infrared results indicate that the conformation of Asp-51 is controlled only by the oxidation state of the low-spin heme. These results indicate that the low-spin heme drives the proton-pumping process.


{{STRUCTURE_1v54|  PDB=1v54  |  SCENE=  }}
The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.,Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15304-9. Epub 2003 Dec 12. PMID:14673090<ref>PMID:14673090</ref>


===Bovine heart cytochrome c oxidase at the fully oxidized state===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_14673090}}
 
==About this Structure==
[[1v54]] is a 26 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V54 OCA].


==See Also==
==See Also==
*[[Cytochrome c oxidase|Cytochrome c oxidase]]
*[[Cytochrome c oxidase|Cytochrome c oxidase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:014673090</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Bos taurus]]
[[Category: Bos taurus]]
[[Category: Cytochrome-c oxidase]]
[[Category: Cytochrome-c oxidase]]

Revision as of 03:09, 29 September 2014

Bovine heart cytochrome c oxidase at the fully oxidized stateBovine heart cytochrome c oxidase at the fully oxidized state

Structural highlights

1v54 is a 26 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , , , , , , , ,
NonStd Res:, ,
Related:1v55
Activity:Cytochrome-c oxidase, with EC number 1.9.3.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Mitochondrial cytochrome c oxidase plays an essential role in aerobic cellular respiration, reducing dioxygen to water in a process coupled with the pumping of protons across the mitochondrial inner membrane. An aspartate residue, Asp-51, located near the enzyme surface, undergoes a redox-coupled x-ray structural change, which is suggestive of a role for this residue in redox-driven proton pumping. However, functional or mechanistic evidence for the involvement of this residue in proton pumping has not yet been obtained. We report that the Asp-51 --> Asn mutation of the bovine enzyme abolishes its proton-pumping function without impairment of the dioxygen reduction activity. Improved x-ray structures (at 1.8/1.9-A resolution in the fully oxidized/reduced states) show that the net positive charge created upon oxidation of the low-spin heme of the enzyme drives the active proton transport from the interior of the mitochondria to Asp-51 across the enzyme via a water channel and a hydrogen-bond network, located in tandem, and that the enzyme reduction induces proton ejection from the aspartate to the mitochondrial exterior. A peptide bond in the hydrogen-bond network critically inhibits reverse proton transfer through the network. A redox-coupled change in the capacity of the water channel, induced by the hydroxyfarnesylethyl group of the low-spin heme, suggests that the channel functions as an effective proton-collecting region. Infrared results indicate that the conformation of Asp-51 is controlled only by the oxidation state of the low-spin heme. These results indicate that the low-spin heme drives the proton-pumping process.

The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.,Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15304-9. Epub 2003 Dec 12. PMID:14673090[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15304-9. Epub 2003 Dec 12. PMID:14673090 doi:10.1073/pnas.2635097100

1v54, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA