1f54: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:1f54.png|left|200px]]
==SOLUTION STRUCTURE OF THE APO N-TERMINAL DOMAIN OF YEAST CALMODULIN==
<StructureSection load='1f54' size='340' side='right' caption='[[1f54]], [[NMR_Ensembles_of_Models | 30 NMR models]]' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1f54]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F54 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1F54 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1f55|1f55]]</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1f54 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1f54 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1f54 RCSB], [http://www.ebi.ac.uk/pdbsum/1f54 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f5/1f54_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We have determined solution structures of the N-terminal half domain (N-domain) of yeast calmodulin (YCM0-N, residues 1-77) in the apo and Ca(2+)-saturated forms by NMR spectroscopy. The Ca(2+)-binding sites of YCM0-N consist of a pair of helix-loop-helix motifs (EF-hands), in which the loops are linked by a short beta-sheet. The binding of two Ca(2+) causes large rearrangement of the four alpha-helices and exposes the hydrophobic surface as observed for vertebrate calmodulin (CaM). Within the observed overall conformational similarity in the peptide backbone, several significant conformational differences were observed between the two proteins, which originated from the 38% disagreement in amino acid sequences. The beta-sheet in apo YCM0-N is strongly twisted compared with that in the N-domain of CaM, while it turns to the normal more stable conformation on Ca(2+) binding. YCM0-N shows higher cooperativity in Ca(2+) binding than the N-domain of CaM, and the observed conformational change of the beta-sheet is a possible cause of the highly cooperative Ca(2+) binding. The hydrophobic surface on Ca(2+)-saturated YCM0-N appears less flexible due to the replacements of Met51, Met71, and Val55 in the hydrophobic surface of CaM with Leu51, Leu71, and Ile55, which is thought to be one of reasons for the poor activation of target enzymes by yeast CaM.


{{STRUCTURE_1f54|  PDB=1f54  |  SCENE=  }}
Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.,Ishida H, Takahashi K, Nakashima K, Kumaki Y, Nakata M, Hikichi K, Yazawa M Biochemistry. 2000 Nov 14;39(45):13660-8. PMID:11076504<ref>PMID:11076504</ref>


===SOLUTION STRUCTURE OF THE APO N-TERMINAL DOMAIN OF YEAST CALMODULIN===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_11076504}}
 
==About this Structure==
[[1f54]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F54 OCA].


==See Also==
==See Also==
*[[Calmodulin|Calmodulin]]
*[[Calmodulin|Calmodulin]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:011076504</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Hikichi, K.]]
[[Category: Hikichi, K.]]

Revision as of 15:16, 28 September 2014

SOLUTION STRUCTURE OF THE APO N-TERMINAL DOMAIN OF YEAST CALMODULINSOLUTION STRUCTURE OF THE APO N-TERMINAL DOMAIN OF YEAST CALMODULIN

Structural highlights

1f54 is a 1 chain structure with sequence from Saccharomyces cerevisiae. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Related:1f55
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

We have determined solution structures of the N-terminal half domain (N-domain) of yeast calmodulin (YCM0-N, residues 1-77) in the apo and Ca(2+)-saturated forms by NMR spectroscopy. The Ca(2+)-binding sites of YCM0-N consist of a pair of helix-loop-helix motifs (EF-hands), in which the loops are linked by a short beta-sheet. The binding of two Ca(2+) causes large rearrangement of the four alpha-helices and exposes the hydrophobic surface as observed for vertebrate calmodulin (CaM). Within the observed overall conformational similarity in the peptide backbone, several significant conformational differences were observed between the two proteins, which originated from the 38% disagreement in amino acid sequences. The beta-sheet in apo YCM0-N is strongly twisted compared with that in the N-domain of CaM, while it turns to the normal more stable conformation on Ca(2+) binding. YCM0-N shows higher cooperativity in Ca(2+) binding than the N-domain of CaM, and the observed conformational change of the beta-sheet is a possible cause of the highly cooperative Ca(2+) binding. The hydrophobic surface on Ca(2+)-saturated YCM0-N appears less flexible due to the replacements of Met51, Met71, and Val55 in the hydrophobic surface of CaM with Leu51, Leu71, and Ile55, which is thought to be one of reasons for the poor activation of target enzymes by yeast CaM.

Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.,Ishida H, Takahashi K, Nakashima K, Kumaki Y, Nakata M, Hikichi K, Yazawa M Biochemistry. 2000 Nov 14;39(45):13660-8. PMID:11076504[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ishida H, Takahashi K, Nakashima K, Kumaki Y, Nakata M, Hikichi K, Yazawa M. Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication. Biochemistry. 2000 Nov 14;39(45):13660-8. PMID:11076504
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA