2ein: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2ein.png|left|200px]]
==Zinc ion binding structure of bovine heart cytochrome C oxidase in the fully oxidized state==
<StructureSection load='2ein' size='340' side='right' caption='[[2ein]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2ein]] is a 26 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2EIN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2EIN FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=CHD:CHOLIC+ACID'>CHD</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=CUA:DINUCLEAR+COPPER+ION'>CUA</scene>, <scene name='pdbligand=DMU:DECYL-BETA-D-MALTOPYRANOSIDE'>DMU</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PEK:(1S)-2-{[(2-AMINOETHOXY)(HYDROXY)PHOSPHORYL]OXY}-1-[(STEAROYLOXY)METHYL]ETHYL+(5E,8E,11E,14E)-ICOSA-5,8,11,14-TETRAENOATE'>PEK</scene>, <scene name='pdbligand=PGV:(1R)-2-{[{[(2S)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+(11E)-OCTADEC-11-ENOATE'>PGV</scene>, <scene name='pdbligand=PSC:(7R,17E,20E)-4-HYDROXY-N,N,N-TRIMETHYL-9-OXO-7-[(PALMITOYLOXY)METHYL]-3,5,8-TRIOXA-4-PHOSPHAHEXACOSA-17,20-DIEN-1-AMINIUM+4-OXIDE'>PSC</scene>, <scene name='pdbligand=TGL:TRISTEAROYLGLYCEROL'>TGL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=FME:N-FORMYLMETHIONINE'>FME</scene>, <scene name='pdbligand=SAC:N-ACETYL-SERINE'>SAC</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2dyr|2dyr]], [[2dys|2dys]], [[1v54|1v54]], [[1v55|1v55]], [[2occ|2occ]], [[1ocr|1ocr]], [[1oco|1oco]], [[1ocz|1ocz]], [[1occ|1occ]], [[2eij|2eij]], [[2eik|2eik]], [[2eil|2eil]], [[2eim|2eim]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cytochrome-c_oxidase Cytochrome-c oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.9.3.1 1.9.3.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ein FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ein OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ein RCSB], [http://www.ebi.ac.uk/pdbsum/2ein PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ei/2ein_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Cytochrome c oxidase transfers electrons and protons for dioxygen reduction coupled with proton pumping. These electron and proton transfers are tightly coupled with each other for the effective energy transduction by various unknown mechanisms. Here, we report a coupling mechanism by a histidine (His-503) at the entrance of a proton transfer pathway to the dioxygen reduction site (D-pathway) of bovine heart cytochrome c oxidase. In the reduced state, a water molecule is fixed by hydrogen bonds between His-503 and Asp-91 of the D-pathway and is linked via two water arrays extending to the molecular surface. The microenvironment of Asp-91 appears in the x-ray structure to have a proton affinity as high as that of His-503. Thus, Asp-91 and His-503 cooperatively trap, on the fixed water molecule, the proton that is transferred through the water arrays from the molecular surface. On oxidation, the His-503 imidazole plane rotates by 180 degrees to break the hydrogen bond to the protonated water and releases the proton to Asp-91. On reduction, Asp-91 donates the proton to the dioxygen reduction site through the D-pathway. The proton collection controlled by His-503 was confirmed by partial electron transfer inhibition by binding of Zn2+ and Cd2+ to His-503 in the x-ray structures. The estimated Kd for Zn2+ binding to His-503 in the x-ray structure is consistent with the reported Kd for complete proton-pumping inhibition by Zn2+ [Kannt A, Ostermann T, Muller H, Ruitenberg M (2001) FEBS Lett 503:142-146]. These results suggest that His-503 couples the proton transfer for dioxygen reduction with the proton pumping.


{{STRUCTURE_2ein|  PDB=2ein  |  SCENE=  }}
A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase.,Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S Proc Natl Acad Sci U S A. 2007 May 8;104(19):7881-6. Epub 2007 Apr 30. PMID:17470809<ref>PMID:17470809</ref>


===Zinc ion binding structure of bovine heart cytochrome C oxidase in the fully oxidized state===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_17470809}}
 
==About this Structure==
[[2ein]] is a 26 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2EIN OCA].


==See Also==
==See Also==
*[[Cytochrome c oxidase|Cytochrome c oxidase]]
*[[Cytochrome c oxidase|Cytochrome c oxidase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:017470809</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Bos taurus]]
[[Category: Bos taurus]]
[[Category: Cytochrome-c oxidase]]
[[Category: Cytochrome-c oxidase]]

Revision as of 13:19, 29 September 2014

Zinc ion binding structure of bovine heart cytochrome C oxidase in the fully oxidized stateZinc ion binding structure of bovine heart cytochrome C oxidase in the fully oxidized state

Structural highlights

2ein is a 26 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , , , , , , ,
NonStd Res:, ,
Related:2dyr, 2dys, 1v54, 1v55, 2occ, 1ocr, 1oco, 1ocz, 1occ, 2eij, 2eik, 2eil, 2eim
Activity:Cytochrome-c oxidase, with EC number 1.9.3.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Cytochrome c oxidase transfers electrons and protons for dioxygen reduction coupled with proton pumping. These electron and proton transfers are tightly coupled with each other for the effective energy transduction by various unknown mechanisms. Here, we report a coupling mechanism by a histidine (His-503) at the entrance of a proton transfer pathway to the dioxygen reduction site (D-pathway) of bovine heart cytochrome c oxidase. In the reduced state, a water molecule is fixed by hydrogen bonds between His-503 and Asp-91 of the D-pathway and is linked via two water arrays extending to the molecular surface. The microenvironment of Asp-91 appears in the x-ray structure to have a proton affinity as high as that of His-503. Thus, Asp-91 and His-503 cooperatively trap, on the fixed water molecule, the proton that is transferred through the water arrays from the molecular surface. On oxidation, the His-503 imidazole plane rotates by 180 degrees to break the hydrogen bond to the protonated water and releases the proton to Asp-91. On reduction, Asp-91 donates the proton to the dioxygen reduction site through the D-pathway. The proton collection controlled by His-503 was confirmed by partial electron transfer inhibition by binding of Zn2+ and Cd2+ to His-503 in the x-ray structures. The estimated Kd for Zn2+ binding to His-503 in the x-ray structure is consistent with the reported Kd for complete proton-pumping inhibition by Zn2+ [Kannt A, Ostermann T, Muller H, Ruitenberg M (2001) FEBS Lett 503:142-146]. These results suggest that His-503 couples the proton transfer for dioxygen reduction with the proton pumping.

A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase.,Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S Proc Natl Acad Sci U S A. 2007 May 8;104(19):7881-6. Epub 2007 Apr 30. PMID:17470809[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S. A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A. 2007 May 8;104(19):7881-6. Epub 2007 Apr 30. PMID:17470809

2ein, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA