4efm: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of H-Ras G12V in complex with GppNHp (state 1)== | ==Crystal structure of H-Ras G12V in complex with GppNHp (state 1)== | ||
<StructureSection load='4efm' size='340' side='right' caption='[[4efm]], [[Resolution|resolution]] 1.90Å' scene=''> | <StructureSection load='4efm' size='340' side='right'caption='[[4efm]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4efm]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4efm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EFM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4EFM FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
< | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4efm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4efm OCA], [https://pdbe.org/4efm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4efm RCSB], [https://www.ebi.ac.uk/pdbsum/4efm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4efm ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:[https://omim.org/entry/218040 218040]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.<ref>PMID:16170316</ref> <ref>PMID:16329078</ref> <ref>PMID:16443854</ref> <ref>PMID:17054105</ref> <ref>PMID:18247425</ref> <ref>PMID:18039947</ref> <ref>PMID:19995790</ref> Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:[https://omim.org/entry/218040 218040]. CMEMS is a variant of Costello syndrome.<ref>PMID:17412879</ref> Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:[https://omim.org/entry/607464 607464]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:[https://omim.org/entry/109800 109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).<ref>PMID:1459726</ref> Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:[https://omim.org/entry/163200 163200]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.<ref>PMID:22683711</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 24: | Line 23: | ||
==See Also== | ==See Also== | ||
*[[GTPase | *[[GTPase Hras 3D structures|GTPase Hras 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Araki | [[Category: Large Structures]] | ||
[[Category: Ijiri | [[Category: Araki M]] | ||
[[Category: Inoue | [[Category: Ijiri Y]] | ||
[[Category: Kataoka | [[Category: Inoue T]] | ||
[[Category: Kumasaka | [[Category: Kataoka T]] | ||
[[Category: Muraoka | [[Category: Kumasaka T]] | ||
[[Category: Seki | [[Category: Muraoka S]] | ||
[[Category: Shima | [[Category: Seki N]] | ||
[[Category: Tamura | [[Category: Shima F]] | ||
[[Category: Yamamoto | [[Category: Tamura A]] | ||
[[Category: Yoshimoto | [[Category: Yamamoto M]] | ||
[[Category: Yoshimoto A]] | |||
Latest revision as of 16:47, 8 November 2023
Crystal structure of H-Ras G12V in complex with GppNHp (state 1)Crystal structure of H-Ras G12V in complex with GppNHp (state 1)
Structural highlights
DiseaseRASH_HUMAN Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.[1] [2] [3] [4] [5] [6] [7] Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040. CMEMS is a variant of Costello syndrome.[8] Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).[9] Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.[10] FunctionRASH_HUMAN Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.[11] [12] [13] Publication Abstract from PubMedGTP-bound Ras adopts two interconverting conformations, "inactive" state 1 and "active" state 2. However, the tertiary structure of wild-type (WT) state 1 remains unsolved. Here we solve the state 1 crystal structures of H-Ras WT together with its oncogenic G12V and Q61L mutants. They assume open structures characterized by impaired interactions of both Thr-35 in switch I and Gly-60 in switch II with the gamma-phosphate of GTP and possess two surface pockets of mutually different shapes unseen in state 2, a potential target for selective inhibitor development. Furthermore, they provide a structural basis for the low GTPase activity of state 1. Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants.,Muraoka S, Shima F, Araki M, Inoue T, Yoshimoto A, Ijiri Y, Seki N, Tamura A, Kumasaka T, Yamamoto M, Kataoka T FEBS Lett. 2012 Jun 12;586(12):1715-8. Epub 2012 May 11. PMID:22584058[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|