2zee: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Crystal structure of the human glutaminyl cyclase mutant S160G at 1.99 angstrom resolution==
==Crystal structure of the human glutaminyl cyclase mutant S160G at 1.99 angstrom resolution==
<StructureSection load='2zee' size='340' side='right' caption='[[2zee]], [[Resolution|resolution]] 1.99&Aring;' scene=''>
<StructureSection load='2zee' size='340' side='right'caption='[[2zee]], [[Resolution|resolution]] 1.99&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2zee]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZEE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ZEE FirstGlance]. <br>
<table><tr><td colspan='2'>[[2zee]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZEE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ZEE FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.99&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2afm|2afm]], [[2zed|2zed]], [[2zef|2zef]], [[2zeg|2zeg]], [[2zeh|2zeh]], [[2zel|2zel]], [[2zem|2zem]], [[2zen|2zen]], [[2zeo|2zeo]], [[2zep|2zep]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">QPCT ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2zee FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zee OCA], [https://pdbe.org/2zee PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2zee RCSB], [https://www.ebi.ac.uk/pdbsum/2zee PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2zee ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutaminyl-peptide_cyclotransferase Glutaminyl-peptide cyclotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.2.5 2.3.2.5] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2zee FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zee OCA], [http://pdbe.org/2zee PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2zee RCSB], [http://www.ebi.ac.uk/pdbsum/2zee PDBsum]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/QPCT_HUMAN QPCT_HUMAN]] Responsible for the biosynthesis of pyroglutamyl peptides. Has a bias against acidic and tryptophan residues adjacent to the N-terminal glutaminyl residue and a lack of importance of chain length after the second residue. Also catalyzes N-terminal pyroglutamate formation. In vitro, catalyzes pyroglutamate formation of N-terminally truncated form of APP amyloid-beta peptides [Glu-3]-beta-amyloid. May be involved in the N-terminal pyroglutamate formation of several amyloid-related plaque-forming peptides.<ref>PMID:15063747</ref> <ref>PMID:18486145</ref> <ref>PMID:21288892</ref>
[https://www.uniprot.org/uniprot/QPCT_HUMAN QPCT_HUMAN] Responsible for the biosynthesis of pyroglutamyl peptides. Has a bias against acidic and tryptophan residues adjacent to the N-terminal glutaminyl residue and a lack of importance of chain length after the second residue. Also catalyzes N-terminal pyroglutamate formation. In vitro, catalyzes pyroglutamate formation of N-terminally truncated form of APP amyloid-beta peptides [Glu-3]-beta-amyloid. May be involved in the N-terminal pyroglutamate formation of several amyloid-related plaque-forming peptides.<ref>PMID:15063747</ref> <ref>PMID:18486145</ref> <ref>PMID:21288892</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ze/2zee_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ze/2zee_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 37: Line 36:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Glutaminyl-peptide cyclotransferase]]
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Chang, E C]]
[[Category: Chang EC]]
[[Category: Chou, T L]]
[[Category: Chou TL]]
[[Category: Huang, K F]]
[[Category: Huang KF]]
[[Category: Wang, A H]]
[[Category: Wang AH]]
[[Category: Wang, Y R]]
[[Category: Wang YR]]
[[Category: Glutaminyl cyclase]]
[[Category: Hydrogen bond network]]
[[Category: Proton transfer]]
[[Category: Pyroglutamate]]
[[Category: Site-directed mutagenesis]]
[[Category: Transferase]]

Latest revision as of 16:33, 1 November 2023

Crystal structure of the human glutaminyl cyclase mutant S160G at 1.99 angstrom resolutionCrystal structure of the human glutaminyl cyclase mutant S160G at 1.99 angstrom resolution

Structural highlights

2zee is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.99Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

QPCT_HUMAN Responsible for the biosynthesis of pyroglutamyl peptides. Has a bias against acidic and tryptophan residues adjacent to the N-terminal glutaminyl residue and a lack of importance of chain length after the second residue. Also catalyzes N-terminal pyroglutamate formation. In vitro, catalyzes pyroglutamate formation of N-terminally truncated form of APP amyloid-beta peptides [Glu-3]-beta-amyloid. May be involved in the N-terminal pyroglutamate formation of several amyloid-related plaque-forming peptides.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

QCs (glutaminyl cyclases; glutaminyl-peptide cyclotransferases, EC 2.3.2.5) catalyse N-terminal pyroglutamate formation in numerous bioactive peptides and proteins. The enzymes were reported to be involved in several pathological conditions such as amyloidotic disease, osteoporosis, rheumatoid arthritis and melanoma. The crystal structure of human QC revealed an unusual H-bond (hydrogen-bond) network in the active site, formed by several highly conserved residues (Ser(160), Glu(201), Asp(248), Asp(305) and His(319)), within which Glu(201) and Asp(248) were found to bind to substrate. In the present study we combined steady-state enzyme kinetic and X-ray structural analyses of 11 single-mutation human QCs to investigate the roles of the H-bond network in catalysis. Our results showed that disrupting one or both of the central H-bonds, i.e., Glu(201)...Asp(305) and Asp(248)...Asp(305), reduced the steady-state catalysis dramatically. The roles of these two COOH...COOH bonds on catalysis could be partly replaced by COOH...water bonds, but not by COOH...CONH(2) bonds, reminiscent of the low-barrier Asp...Asp H-bond in the active site of pepsin-like aspartic peptidases. Mutations on Asp(305), a residue located at the centre of the H-bond network, raised the K(m) value of the enzyme by 4.4-19-fold, but decreased the k(cat) value by 79-2842-fold, indicating that Asp(305) primarily plays a catalytic role. In addition, results from mutational studies on Ser(160) and His(319) suggest that these two residues might help to stabilize the conformations of Asp(248) and Asp(305) respectively. These data allow us to propose an essential proton transfer between Glu(201), Asp(305) and Asp(248) during the catalysis by animal QCs.

A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis.,Huang KF, Wang YR, Chang EC, Chou TL, Wang AH Biochem J. 2008 Apr 1;411(1):181-90. PMID:18072935[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schilling S, Hoffmann T, Manhart S, Hoffmann M, Demuth HU. Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. FEBS Lett. 2004 Apr 9;563(1-3):191-6. PMID:15063747 doi:http://dx.doi.org/10.1016/S0014-5793(04)00300-X
  2. Cynis H, Rahfeld JU, Stephan A, Kehlen A, Koch B, Wermann M, Demuth HU, Schilling S. Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. J Mol Biol. 2008 Jun 20;379(5):966-80. doi: 10.1016/j.jmb.2008.03.078. Epub 2008 , Apr 15. PMID:18486145 doi:http://dx.doi.org/10.1016/j.jmb.2008.03.078
  3. Huang KF, Liaw SS, Huang WL, Chia CY, Lo YC, Chen YL, Wang AH. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J Biol Chem. 2011 Apr 8;286(14):12439-49. Epub 2011 Feb 1. PMID:21288892 doi:10.1074/jbc.M110.208595
  4. Huang KF, Wang YR, Chang EC, Chou TL, Wang AH. A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. Biochem J. 2008 Apr 1;411(1):181-90. PMID:18072935 doi:http://dx.doi.org/10.1042/BJ20071073

2zee, resolution 1.99Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA