3kyc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: left|200px <!-- The line below this paragraph, containing "STRUCTURE_3kyc", creates the "Structure Box" on the page. You may change the PDB parameter (which sets the PD...
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3kyc.png|left|200px]]


<!--
==Human SUMO E1 complex with a SUMO1-AMP mimic==
The line below this paragraph, containing "STRUCTURE_3kyc", creates the "Structure Box" on the page.
<StructureSection load='3kyc' size='340' side='right'caption='[[3kyc]], [[Resolution|resolution]] 2.45&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3kyc]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KYC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3KYC FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.45&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=JZU:5-DEOXY-5-(SULFAMOYLAMINO)ADENOSINE'>JZU</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
{{STRUCTURE_3kyc|  PDB=3kyc  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kyc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kyc OCA], [https://pdbe.org/3kyc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kyc RCSB], [https://www.ebi.ac.uk/pdbsum/3kyc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kyc ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/SAE2_HUMAN SAE2_HUMAN] The heterodimer acts as a E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2.<ref>PMID:11481243</ref> <ref>PMID:11451954</ref> <ref>PMID:19443651</ref> <ref>PMID:15660128</ref> <ref>PMID:17643372</ref> <ref>PMID:20164921</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ky/3kyc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3kyc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.


===Human SUMO E1 complex with a SUMO1-AMP mimic===
Active site remodelling accompanies thioester bond formation in the SUMO E1.,Olsen SK, Capili AD, Lu X, Tan DS, Lima CD Nature. 2010 Feb 18;463(7283):906-12. PMID:20164921<ref>PMID:20164921</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_20164921}}, adds the Publication Abstract to the page
<div class="pdbe-citations 3kyc" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 20164921 is the PubMed ID number.
-->
{{ABSTRACT_PUBMED_20164921}}
 
==About this Structure==
[[3kyc]] is a 3 chain structure of [[Human SUMO E1 complex]] and [[SUMO]] with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KYC OCA].


==See Also==
==See Also==
*[[Human SUMO E1 complex|Human SUMO E1 complex]]
*[[Human SUMO E1 complex|Human SUMO E1 complex]]
*[[Human SUMO E1 complex with a SUMO1-AMP mimic|Human SUMO E1 complex with a SUMO1-AMP mimic]]
*[[Human SUMO E1~SUMO1-AMP tetrahedral intermediate mimic|Human SUMO E1~SUMO1-AMP tetrahedral intermediate mimic]]
*[[SUMO|SUMO]]
*[[SUMO|SUMO]]
 
*[[SUMO 3D Structures|SUMO 3D Structures]]
==Reference==
*[[3D structures of Ubiquitin activating enzyme|3D structures of Ubiquitin activating enzyme]]
<ref group="xtra">PMID:020164921</ref><references group="xtra"/>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Lima, C D.]]
[[Category: Large Structures]]
[[Category: Acyl-adenylate intermediate]]
[[Category: Lima CD]]
[[Category: Adenylation]]
[[Category: Atp-binding]]
[[Category: E1]]
[[Category: Inhibitor]]
[[Category: Isopeptide bond]]
[[Category: Ligase]]
[[Category: Membrane]]
[[Category: Nucleotide-binding]]
[[Category: Nucleus]]
[[Category: Phosphoprotein]]
[[Category: Sumo]]
[[Category: Thioester]]
[[Category: Ubiquitin]]
[[Category: Ubl conjugation pathway]]

Latest revision as of 13:06, 6 November 2024

Human SUMO E1 complex with a SUMO1-AMP mimicHuman SUMO E1 complex with a SUMO1-AMP mimic

Structural highlights

3kyc is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.45Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SAE2_HUMAN The heterodimer acts as a E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2.[1] [2] [3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

Active site remodelling accompanies thioester bond formation in the SUMO E1.,Olsen SK, Capili AD, Lu X, Tan DS, Lima CD Nature. 2010 Feb 18;463(7283):906-12. PMID:20164921[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Azuma Y, Tan SH, Cavenagh MM, Ainsztein AM, Saitoh H, Dasso M. Expression and regulation of the mammalian SUMO-1 E1 enzyme. FASEB J. 2001 Aug;15(10):1825-7. PMID:11481243
  2. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 2001 Sep 21;276(38):35368-74. Epub 2001 Jul 12. PMID:11451954 doi:10.1074/jbc.M104214200
  3. Wang J, Lee B, Cai S, Fukui L, Hu W, Chen Y. Conformational transition associated with E1-E2 interaction in small ubiquitin-like modifications. J Biol Chem. 2009 Jul 24;284(30):20340-8. doi: 10.1074/jbc.M109.000257. Epub 2009, May 14. PMID:19443651 doi:10.1074/jbc.M109.000257
  4. Lois LM, Lima CD. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 2005 Feb 9;24(3):439-51. Epub 2005 Jan 20. PMID:15660128
  5. Wang J, Hu W, Cai S, Lee B, Song J, Chen Y. The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Mol Cell. 2007 Jul 20;27(2):228-37. PMID:17643372 doi:http://dx.doi.org/10.1016/j.molcel.2007.05.023
  6. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature. 2010 Feb 18;463(7283):906-12. PMID:20164921 doi:10.1038/nature08765
  7. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature. 2010 Feb 18;463(7283):906-12. PMID:20164921 doi:10.1038/nature08765

3kyc, resolution 2.45Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA