2v37: Difference between revisions
m Protected "2v37" [edit=sysop:move=sysop] |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Solution structure of the N-terminal extracellular domain of human T- cadherin== | |||
<StructureSection load='2v37' size='340' side='right'caption='[[2v37]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2v37]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2V37 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2V37 FirstGlance]. <br> | |||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2v37 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v37 OCA], [https://pdbe.org/2v37 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2v37 RCSB], [https://www.ebi.ac.uk/pdbsum/2v37 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2v37 ProSAT]</span></td></tr> | |||
-- | </table> | ||
== Function == | |||
[[https://www.uniprot.org/uniprot/CAD13_HUMAN CAD13_HUMAN]] Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. May act as a negative regulator of neural cell growth.<ref>PMID:10737605</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v3/2v37_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2v37 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
T-cadherin is unique among the family of type I cadherins, because it lacks transmembrane and cytosolic domains, and attaches to the membrane via a glycophosphoinositol anchor. The N-terminal cadherin repeat of T-cadherin (Tcad1) is approximately 30% identical to E-, N-, and other classical cadherins. However, it lacks many amino acids crucial for their adhesive function of classical cadherins. Among others, Trp-2, which is the key residue forming the canonical strand-exchange dimer, is replaced by an isoleucine. Here, we report the NMR structure of the first cadherin repeat of T-cadherin (Tcad1). Tcad1, as other cadherin domains, adopts a beta-barrel structure with a Greek key folding topology. However, Tcad1 is monomeric in the absence and presence of calcium. Accordingly, lle-2 binds into a hydrophobic pocket on the same protomer and participates in an N-terminal beta-sheet. Specific amino acid replacements compared to classical cadherins reduce the size of the binding pocket for residue 2 and alter the backbone conformation and flexibility around residues 5 and 15 as well as many electrostatic interactions. These modifications apparently stabilize the monomeric form and make it less susceptible to a conformational switch upon calcium binding. The absence of a tendency for homoassociation observed by NMR is consistent with electron microscopy and solid-phase binding data of the full T-cadherin ectodomain (Tcad1-5). The apparent low adhesiveness of T-cadherin suggests that it is likely to be involved in reversible and dynamic cellular adhesion-deadhesion processes, which are consistent with its role in cell growth and migration. | |||
Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain.,Dames SA, Bang E, Haussinger D, Ahrens T, Engel J, Grzesiek S J Biol Chem. 2008 Aug 22;283(34):23485-95. Epub 2008 Jun 10. PMID:18550521<ref>PMID:18550521</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2v37" style="background-color:#fffaf0;"></div> | |||
== | |||
==See Also== | ==See Also== | ||
*[[Cadherin]] | *[[Cadherin 3D structures|Cadherin 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
[[Category: | </StructureSection> | ||
[[Category: Ahrens, T | [[Category: Human]] | ||
[[Category: Bang, E J | [[Category: Large Structures]] | ||
[[Category: Dames, S A | [[Category: Ahrens, T]] | ||
[[Category: Grzesiek, S | [[Category: Bang, E J]] | ||
[[Category: Haeussinger, D | [[Category: Dames, S A]] | ||
[[Category: Grzesiek, S]] | |||
[[Category: Haeussinger, D]] | |||
[[Category: Adiponectin receptor]] | [[Category: Adiponectin receptor]] | ||
[[Category: Calcium]] | [[Category: Calcium]] |
Latest revision as of 23:57, 20 October 2021
Solution structure of the N-terminal extracellular domain of human T- cadherinSolution structure of the N-terminal extracellular domain of human T- cadherin
Structural highlights
Function[CAD13_HUMAN] Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. May act as a negative regulator of neural cell growth.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedT-cadherin is unique among the family of type I cadherins, because it lacks transmembrane and cytosolic domains, and attaches to the membrane via a glycophosphoinositol anchor. The N-terminal cadherin repeat of T-cadherin (Tcad1) is approximately 30% identical to E-, N-, and other classical cadherins. However, it lacks many amino acids crucial for their adhesive function of classical cadherins. Among others, Trp-2, which is the key residue forming the canonical strand-exchange dimer, is replaced by an isoleucine. Here, we report the NMR structure of the first cadherin repeat of T-cadherin (Tcad1). Tcad1, as other cadherin domains, adopts a beta-barrel structure with a Greek key folding topology. However, Tcad1 is monomeric in the absence and presence of calcium. Accordingly, lle-2 binds into a hydrophobic pocket on the same protomer and participates in an N-terminal beta-sheet. Specific amino acid replacements compared to classical cadherins reduce the size of the binding pocket for residue 2 and alter the backbone conformation and flexibility around residues 5 and 15 as well as many electrostatic interactions. These modifications apparently stabilize the monomeric form and make it less susceptible to a conformational switch upon calcium binding. The absence of a tendency for homoassociation observed by NMR is consistent with electron microscopy and solid-phase binding data of the full T-cadherin ectodomain (Tcad1-5). The apparent low adhesiveness of T-cadherin suggests that it is likely to be involved in reversible and dynamic cellular adhesion-deadhesion processes, which are consistent with its role in cell growth and migration. Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain.,Dames SA, Bang E, Haussinger D, Ahrens T, Engel J, Grzesiek S J Biol Chem. 2008 Aug 22;283(34):23485-95. Epub 2008 Jun 10. PMID:18550521[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|