1hgf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
==BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY==
==BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY==
<StructureSection load='1hgf' size='340' side='right' caption='[[1hgf]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='1hgf' size='340' side='right'caption='[[1hgf]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1hgf]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Influenza_a_virus_(a/x-31(h3n2)) Influenza a virus (a/x-31(h3n2))]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HGF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HGF FirstGlance]. <br>
<table><tr><td colspan='2'>[[1hgf]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Influenza_A_virus_(A/X-31(H3N2)) Influenza A virus (A/X-31(H3N2))]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HGF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HGF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hgf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hgf OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hgf RCSB], [http://www.ebi.ac.uk/pdbsum/1hgf PDBsum]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hgf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hgf OCA], [https://pdbe.org/1hgf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hgf RCSB], [https://www.ebi.ac.uk/pdbsum/1hgf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hgf ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/HEMA_I68A0 HEMA_I68A0]] Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization of about two third of the virus particles through clathrin-dependent endocytosis and about one third through a clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.  
[https://www.uniprot.org/uniprot/HEMA_I000X HEMA_I000X] Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization of about two third of the virus particles through clathrin-dependent endocytosis and about one third through a clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.<ref>PMID:15122347</ref>  Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization either through clathrin-dependent endocytosis or through clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.[HAMAP-Rule:MF_04072]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hg/1hgf_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hg/1hgf_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hgf ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 26: Line 28:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 1hgf" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Conservation%2C Evolutionary|Conservation%2C Evolutionary]]
*[[Hemagglutinin|Hemagglutinin]]
*[[Hemagglutinin|Hemagglutinin]]
*[[User:Eric Martz|User:Eric Martz]]
*[[Hemagglutinin 3D structures|Hemagglutinin 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Brown, J H]]
[[Category: Large Structures]]
[[Category: Crowther, R L]]
[[Category: Brown JH]]
[[Category: Glick, G D]]
[[Category: Crowther RL]]
[[Category: Hanson, J E]]
[[Category: Glick GD]]
[[Category: Park, S J]]
[[Category: Hanson JE]]
[[Category: Sauter, N K]]
[[Category: Park S-J]]
[[Category: Skehel, J J]]
[[Category: Sauter NK]]
[[Category: Wiley, D C]]
[[Category: Skehel JJ]]
[[Category: Influenza virus hemagglutinin]]
[[Category: Wiley DC]]
[[Category: Viral protein]]

Latest revision as of 03:03, 21 November 2024

BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHYBINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY

Structural highlights

1hgf is a 6 chain structure with sequence from Influenza A virus (A/X-31(H3N2)). Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HEMA_I000X Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization of about two third of the virus particles through clathrin-dependent endocytosis and about one third through a clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.[1] Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization either through clathrin-dependent endocytosis or through clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.[HAMAP-Rule:MF_04072]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The interaction between influenza virus hemagglutinin and its cell-surface receptor, 5-N-acetylneuraminic acid (sialic acid), was probed by the synthesis of 12 sialic acid analogs, including derivatives at the 2-carboxylate, 5-acetamido, 4-, 7-, and 9-hydroxyl, and glycosidic positions. The equilibrium dissociation constants of these analogs were determined by nuclear magnetic resonance spectroscopy. Ligand modifications that reduced or abolished binding included the replacement of the 2-carboxylate with a carboxamide, the substitution of azido or N-benzyloxycarbonyl groups for the 5-acetamido group, and the replacement of the 9-hydroxyl with amino or O-acetyl moieties. Modifications having little effect on binding included the introduction of longer chains at the 4-hydroxyl position, the replacement of the acetamido methyl group with an ethyl group, and the removal of the 7-hydroxyl group. X-ray diffraction studies yielded 3 A resolution crystal structures of hemagglutinin in complex with four of the synthetic analogs [alpha-2-O-methyl-, 4-O-acetyl-alpha-2-O-methyl-, 9-amino-9-deoxy-alpha-2-O-methyl-, and alpha-2-O-(4'-benzylamidocarboxybutyl)-N-acetylneuraminic acid] and with the naturally occurring cell-surface saccharide (alpha 2-3)sialyllactose. The X-ray studies unambiguously establish the position and orientation of bound sialic acid, indicate the position of the lactose group of (alpha 2-3)sialyllactose, and suggest the location of an alpha-glycosidic chain (4'-benzylamidocarboxybutyl) that increases the binding affinity of sialic acid by a factor of about 3. Although the protein complexed with alpha-2-O-methylsialic acid contains the mutation Gly-135-->Arg near the ligand binding site, the mutation apparently does not affect the ligand's position. The X-ray studies allow us to interpret the binding affinities in terms of the crystallographic structure. The results suggest further experiments which could lead to the design of tight binding inhibitors of possible therapeutic value.

Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography.,Sauter NK, Hanson JE, Glick GD, Brown JH, Crowther RL, Park SJ, Skehel JJ, Wiley DC Biochemistry. 1992 Oct 13;31(40):9609-21. PMID:1327122[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rust MJ, Lakadamyali M, Zhang F, Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 2004 Jun;11(6):567-73. PMID:15122347 doi:10.1038/nsmb769
  2. Sauter NK, Hanson JE, Glick GD, Brown JH, Crowther RL, Park SJ, Skehel JJ, Wiley DC. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry. 1992 Oct 13;31(40):9609-21. PMID:1327122

1hgf, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA