3si2: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3si2.png|left|200px]]


<!--
==Structure of glycosylated murine glutaminyl cyclase in presence of the inhibitor PQ50 (PDBD150)==
The line below this paragraph, containing "STRUCTURE_3si2", creates the "Structure Box" on the page.
<StructureSection load='3si2' size='340' side='right'caption='[[3si2]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3si2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SI2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SI2 FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PBD:1-(3,4-DIMETHOXYPHENYL)-3-[3-(1H-IMIDAZOL-1-YL)PROPYL]THIOUREA'>PBD</scene>, <scene name='pdbligand=PRD_900017:triacetyl-beta-chitotriose'>PRD_900017</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
{{STRUCTURE_3si2|  PDB=3si2  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3si2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3si2 OCA], [https://pdbe.org/3si2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3si2 RCSB], [https://www.ebi.ac.uk/pdbsum/3si2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3si2 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/QPCT_MOUSE QPCT_MOUSE] Responsible for the biosynthesis of pyroglutamyl peptides. Has a bias against acidic and tryptophan residues adjacent to the N-terminal glutaminyl residue and a lack of importance of chain length after the second residue (By similarity).
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.


===Structure of glycosylated murine glutaminyl cyclase in presence of the inhibitor PQ50 (PDBD150)===
Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center.,Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU Biochemistry. 2011 Jun 27. PMID:21671571<ref>PMID:21671571</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3si2" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_21671571}}, adds the Publication Abstract to the page
*[[Glutaminyl cyclase|Glutaminyl cyclase]]
(as it appears on PubMed at http://www.pubmed.gov), where 21671571 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_21671571}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
[[3si2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SI2 OCA].
 
==Reference==
<ref group="xtra">PMID:021671571</ref><references group="xtra"/>
[[Category: Glutaminyl-peptide cyclotransferase]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
[[Category: Carrillo, D.]]
[[Category: Carrillo D]]
[[Category: Parthier, C.]]
[[Category: Parthier C]]
[[Category: Stubbs, M T.]]
[[Category: Stubbs MT]]
[[Category: Alpha/beta hydrolase]]
[[Category: Alzheimer's disease]]
[[Category: Glycoprotein]]
[[Category: Glycosylation]]
[[Category: Pe]]
[[Category: Pglu]]
[[Category: Pglu-amyloid]]
[[Category: Pyroglutamate]]
[[Category: Transferase-transferase inhibitor complex]]

Latest revision as of 13:26, 6 November 2024

Structure of glycosylated murine glutaminyl cyclase in presence of the inhibitor PQ50 (PDBD150)Structure of glycosylated murine glutaminyl cyclase in presence of the inhibitor PQ50 (PDBD150)

Structural highlights

3si2 is a 1 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

QPCT_MOUSE Responsible for the biosynthesis of pyroglutamyl peptides. Has a bias against acidic and tryptophan residues adjacent to the N-terminal glutaminyl residue and a lack of importance of chain length after the second residue (By similarity).

Publication Abstract from PubMed

Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.

Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center.,Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU Biochemistry. 2011 Jun 27. PMID:21671571[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ruiz-Carrillo D, Koch B, Parthier C, Wermann M, Dambe T, Buchholz M, Ludwig HH, Heiser U, Rahfeld JU, Stubbs MT, Schilling S, Demuth HU. Structures of Glycosylated Mammalian Glutaminyl Cyclases Reveal Conformational Variability near the Active Center. Biochemistry. 2011 Jun 27. PMID:21671571 doi:10.1021/bi200249h

3si2, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA