2kfm: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Mouse Prion Protein (121-231) with Mutations Y225A and Y226A== | |||
<StructureSection load='2kfm' size='340' side='right'caption='[[2kfm]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2kfm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KFM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KFM FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 20 models</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2kfm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kfm OCA], [https://pdbe.org/2kfm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2kfm RCSB], [https://www.ebi.ac.uk/pdbsum/2kfm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2kfm ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/PRIO_MOUSE PRIO_MOUSE] Note=Found in high quantity in the brain of humans and animals infected with degenerative neurological diseases such as kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler syndrome (GSS), scrapie, bovine spongiform encephalopathy (BSE), transmissible mink encephalopathy (TME), etc. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PRIO_MOUSE PRIO_MOUSE] May play a role in neuronal development and synaptic plasticity. May be required for neuronal myelin sheath maintenance. May play a role in iron uptake and iron homeostasis. Soluble oligomers are toxic to cultured neuroblastoma cells and induce apoptosis (in vitro) (By similarity). Association with GPC1 (via its heparan sulfate chains) targets PRNP to lipid rafts. Also provides Cu(2+) or ZN(2+) for the ascorbate-mediated GPC1 deaminase degradation of its heparan sulfate side chains.<ref>PMID:12732622</ref> <ref>PMID:16492732</ref> <ref>PMID:19242475</ref> <ref>PMID:19568430</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/kf/2kfm_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2kfm ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
NMR structures are presented for the recombinant construct of residues 121-230 from the tammar wallaby (Macropus eugenii) prion protein (PrP) twPrP(121-230) and for the variant mouse PrPs mPrP[Y225A,Y226A](121-231) and mPrP[V166A](121-231) at 20 degrees C and pH 4.5. All three proteins exhibit the same global architecture as seen in other recombinant PrP(C)s (cellular isoforms of PrP) and shown to prevail in natural bovine PrP(C). Special interest was focused on a loop that connects the beta2-strand with helix alpha2 in the PrP(C) fold, since there are indications from in vivo experiments that this local structural feature affects the susceptibility of transgenic mice to transmissible spongiform encephalopathies. This beta2-alpha2 loop and helix alpha3 form a solvent-accessible contiguous epitope, which has been proposed to be the recognition area for a hypothetical chaperone, the "protein X". This hypothetical chaperone would affect the conversion of PrP(C) into the disease-related scrapie form (PrP(Sc)) by moderating intermolecular interactions related to the transmission barrier of transmissible spongiform encephalopathies between different species. In contrast to mPrP(121-231) and most other mammalian PrP(C)s, the beta2-alpha2 loop is well defined at 20 degrees C in tammar wallaby PrP and in the two aforementioned variants of mPrP, showing that long-range interactions with helix alpha3 can have an overriding influence on the structural definition of the beta2-alpha2 loop. Further NMR studies with two variant mPrPs, mPrP[Y225A](121-231) and mPrP[Y226A](121-231), showed that these interactions are dominantly mediated by close contacts between residues 166 and 225. The results of the present study then lead to the intriguing indication that well-defined long-range intramolecular interactions could act as regulators of the functional specificity of PrP(C). | |||
Prion protein NMR structure from tammar wallaby (Macropus eugenii) shows that the beta2-alpha2 loop is modulated by long-range sequence effects.,Christen B, Hornemann S, Damberger FF, Wuthrich K J Mol Biol. 2009 Jun 26;389(5):833-45. Epub 2009 Apr 23. PMID:19393664<ref>PMID:19393664</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2kfm" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Prion|Prion]] | *[[Prion 3D structures|Prion 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Christen | [[Category: Christen B]] | ||
[[Category: Damberger | [[Category: Damberger FF]] | ||
[[Category: Hornemann | [[Category: Hornemann S]] | ||
[[Category: Wuthrich | [[Category: Wuthrich K]] | ||
Latest revision as of 04:07, 21 November 2024
Mouse Prion Protein (121-231) with Mutations Y225A and Y226AMouse Prion Protein (121-231) with Mutations Y225A and Y226A
Structural highlights
DiseasePRIO_MOUSE Note=Found in high quantity in the brain of humans and animals infected with degenerative neurological diseases such as kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler syndrome (GSS), scrapie, bovine spongiform encephalopathy (BSE), transmissible mink encephalopathy (TME), etc. FunctionPRIO_MOUSE May play a role in neuronal development and synaptic plasticity. May be required for neuronal myelin sheath maintenance. May play a role in iron uptake and iron homeostasis. Soluble oligomers are toxic to cultured neuroblastoma cells and induce apoptosis (in vitro) (By similarity). Association with GPC1 (via its heparan sulfate chains) targets PRNP to lipid rafts. Also provides Cu(2+) or ZN(2+) for the ascorbate-mediated GPC1 deaminase degradation of its heparan sulfate side chains.[1] [2] [3] [4] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedNMR structures are presented for the recombinant construct of residues 121-230 from the tammar wallaby (Macropus eugenii) prion protein (PrP) twPrP(121-230) and for the variant mouse PrPs mPrP[Y225A,Y226A](121-231) and mPrP[V166A](121-231) at 20 degrees C and pH 4.5. All three proteins exhibit the same global architecture as seen in other recombinant PrP(C)s (cellular isoforms of PrP) and shown to prevail in natural bovine PrP(C). Special interest was focused on a loop that connects the beta2-strand with helix alpha2 in the PrP(C) fold, since there are indications from in vivo experiments that this local structural feature affects the susceptibility of transgenic mice to transmissible spongiform encephalopathies. This beta2-alpha2 loop and helix alpha3 form a solvent-accessible contiguous epitope, which has been proposed to be the recognition area for a hypothetical chaperone, the "protein X". This hypothetical chaperone would affect the conversion of PrP(C) into the disease-related scrapie form (PrP(Sc)) by moderating intermolecular interactions related to the transmission barrier of transmissible spongiform encephalopathies between different species. In contrast to mPrP(121-231) and most other mammalian PrP(C)s, the beta2-alpha2 loop is well defined at 20 degrees C in tammar wallaby PrP and in the two aforementioned variants of mPrP, showing that long-range interactions with helix alpha3 can have an overriding influence on the structural definition of the beta2-alpha2 loop. Further NMR studies with two variant mPrPs, mPrP[Y225A](121-231) and mPrP[Y226A](121-231), showed that these interactions are dominantly mediated by close contacts between residues 166 and 225. The results of the present study then lead to the intriguing indication that well-defined long-range intramolecular interactions could act as regulators of the functional specificity of PrP(C). Prion protein NMR structure from tammar wallaby (Macropus eugenii) shows that the beta2-alpha2 loop is modulated by long-range sequence effects.,Christen B, Hornemann S, Damberger FF, Wuthrich K J Mol Biol. 2009 Jun 26;389(5):833-45. Epub 2009 Apr 23. PMID:19393664[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|