2gam: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2gam.gif|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_2gam", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_2gam|  PDB=2gam  |  SCENE=  }}
'''X-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L) in complex with Galb1,3GalNAc'''


==X-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L) in complex with Galb1,3GalNAc==
<StructureSection load='2gam' size='340' side='right'caption='[[2gam]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2gam]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GAM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GAM FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GAL:BETA-D-GALACTOSE'>GAL</scene>, <scene name='pdbligand=NGA:N-ACETYL-D-GALACTOSAMINE'>NGA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gam FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gam OCA], [https://pdbe.org/2gam PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gam RCSB], [https://www.ebi.ac.uk/pdbsum/2gam PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gam ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/GCNT1_MOUSE GCNT1_MOUSE] Forms critical branches in O-glycans.<ref>PMID:7983056</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ga/2gam_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2gam ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.


==Overview==
X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism.,Pak JE, Arnoux P, Zhou S, Sivarajah P, Satkunarajah M, Xing X, Rini JM J Biol Chem. 2006 Sep 8;281(36):26693-701. Epub 2006 Jul 7. PMID:16829524<ref>PMID:16829524</ref>
Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
2GAM is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GAM OCA].
</div>
<div class="pdbe-citations 2gam" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism., Pak JE, Arnoux P, Zhou S, Sivarajah P, Satkunarajah M, Xing X, Rini JM, J Biol Chem. 2006 Sep 8;281(36):26693-701. Epub 2006 Jul 7. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16829524 16829524]
*[[O-GlcNAc transferase 3D structures|O-GlcNAc transferase 3D structures]]
[[Category: Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N- acetylglucosaminyltransferase]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
[[Category: Single protein]]
[[Category: Pak JE]]
[[Category: Pak, J E.]]
[[Category: Rini JM]]
[[Category: Rini, J M.]]
[[Category: Cis-peptide]]
[[Category: Dimer]]
[[Category: Glycoprotein]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May  4 04:53:34 2008''

Latest revision as of 11:03, 30 October 2024

X-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L) in complex with Galb1,3GalNAcX-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L) in complex with Galb1,3GalNAc

Structural highlights

2gam is a 4 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GCNT1_MOUSE Forms critical branches in O-glycans.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.

X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism.,Pak JE, Arnoux P, Zhou S, Sivarajah P, Satkunarajah M, Xing X, Rini JM J Biol Chem. 2006 Sep 8;281(36):26693-701. Epub 2006 Jul 7. PMID:16829524[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sekine M, Hashimoto Y, Suzuki M, Inagaki F, Takio K, Suzuki A. Purification and characterization of UDP-GlcNAc:IV3 beta Gal-Gb4Cer beta-1,6-GlcNAc transferase from mouse kidney. J Biol Chem. 1994 Dec 9;269(49):31143-8. PMID:7983056
  2. Pak JE, Arnoux P, Zhou S, Sivarajah P, Satkunarajah M, Xing X, Rini JM. X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J Biol Chem. 2006 Sep 8;281(36):26693-701. Epub 2006 Jul 7. PMID:16829524 doi:10.1074/jbc.M603534200

2gam, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA