1op2: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/op/1op2_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/op/1op2_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1op2 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1op2 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We deduced that Agkistrodon actus venom serine proteinases I and II, previously isolated from the venom of A. acutus (Zhu, Z., Gong, P., Teng, M., and Niu, L. (2003) Acta Crystallogr. Sect. D Biol. Crystallogr. 59, 547-550), are encoded by two almost identical genes, with only the single substitution Asp for Asn at residue 62. Amidolytic assays indicated that they possess slightly different enzymatic properties. Crystal structures of A. actus venom serine proteinases I and II were determined at resolution of 2.0 and 2.1 A with the identification of trisaccharide (NAG(301)-FUC(302)-NAG(303)) and monosaccharide (NAG(301)) residues in them, respectively. The substrate binding sites S3 of the two proteinases appear much shallower than that of Trimeresurus stejnegeri venom plasminogen activator despite the overall structural similarity. Based on structural analysis, we showed that these Asn(35)-linked oligosaccharides collide spatially with some inhibitors, such as soybean trypsin inhibitor, and would therefore hinder their inhibitory binding. Difference of the carbohydrates in both the proteinases might also lead to their altered catalytic activities. | |||
Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases.,Zhu Z, Liang Z, Zhang T, Zhu Z, Xu W, Teng M, Niu L J Biol Chem. 2005 Mar 18;280(11):10524-9. Epub 2005 Jan 4. PMID:15632114<ref>PMID:15632114</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1op2" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Latest revision as of 10:33, 23 October 2024
Crystal Structure of AaV-SP-II, a Glycosylated Snake Venom Serine Proteinase from Agkistrodon acutusCrystal Structure of AaV-SP-II, a Glycosylated Snake Venom Serine Proteinase from Agkistrodon acutus
Structural highlights
FunctionVSPP_DEIAC Snake venom serine protease that has fibrinogenolytic activities. Also possess esterolysis and amidolytic activities.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe deduced that Agkistrodon actus venom serine proteinases I and II, previously isolated from the venom of A. acutus (Zhu, Z., Gong, P., Teng, M., and Niu, L. (2003) Acta Crystallogr. Sect. D Biol. Crystallogr. 59, 547-550), are encoded by two almost identical genes, with only the single substitution Asp for Asn at residue 62. Amidolytic assays indicated that they possess slightly different enzymatic properties. Crystal structures of A. actus venom serine proteinases I and II were determined at resolution of 2.0 and 2.1 A with the identification of trisaccharide (NAG(301)-FUC(302)-NAG(303)) and monosaccharide (NAG(301)) residues in them, respectively. The substrate binding sites S3 of the two proteinases appear much shallower than that of Trimeresurus stejnegeri venom plasminogen activator despite the overall structural similarity. Based on structural analysis, we showed that these Asn(35)-linked oligosaccharides collide spatially with some inhibitors, such as soybean trypsin inhibitor, and would therefore hinder their inhibitory binding. Difference of the carbohydrates in both the proteinases might also lead to their altered catalytic activities. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases.,Zhu Z, Liang Z, Zhang T, Zhu Z, Xu W, Teng M, Niu L J Biol Chem. 2005 Mar 18;280(11):10524-9. Epub 2005 Jan 4. PMID:15632114[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|