1sh7: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystal structure of a cold adapted subtilisin-like serine proteinase== | ||
<StructureSection load='1sh7' size='340' side='right'caption='[[1sh7]], [[Resolution|resolution]] 1.84Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1sh7]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Vibrio_sp._PA-44 Vibrio sp. PA-44]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SH7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SH7 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.84Å</td></tr> | |||
-- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=PMS:PHENYLMETHANESULFONIC+ACID'>PMS</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sh7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sh7 OCA], [https://pdbe.org/1sh7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sh7 RCSB], [https://www.ebi.ac.uk/pdbsum/1sh7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sh7 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q8GB52_9VIBR Q8GB52_9VIBR] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sh/1sh7_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sh7 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structure of a subtilisin-like serine proteinase from the psychrotrophic marine bacterium, Vibrio sp. PA-44, was solved by means of molecular replacement and refined at 1.84 A. This is the first structure of a cold-adapted subtilase to be determined and its elucidation facilitates examination of the molecular principles underlying temperature adaptation in enzymes. The cold-adapted Vibrio proteinase was compared with known three-dimensional structures of homologous enzymes of meso- and thermophilic origin, proteinase K and thermitase, to which it has high structural resemblance. The main structural features emerging as plausible determinants of temperature adaptation in the enzymes compared involve the character of their exposed and buried surfaces, which may be related to temperature-dependent variation in the physical properties of water. Thus, the hydrophobic effect is found to play a significant role in the structural stability of the meso- and thermophile enzymes, whereas the cold-adapted enzyme has more of its apolar surface exposed. In addition, the cold-adapted Vibrio proteinase is distinguished from the more stable enzymes by its strong anionic character arising from the high occurrence of uncompensated negatively charged residues at its surface. Interestingly, both the cold-adapted and thermophile proteinases differ from the mesophile enzyme in having more extensive hydrogen- and ion pair interactions in their structures; this supports suggestions of a dual role of electrostatic interactions in the adaptation of enzymes to both high and low temperatures. The Vibrio proteinase has three calcium ions associated with its structure, one of which is in a calcium-binding site not described in other subtilases. | |||
Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.,Arnorsdottir J, Kristjansson MM, Ficner R FEBS J. 2005 Feb;272(3):832-45. PMID:15670163<ref>PMID:15670163</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1sh7" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Proteinase 3D structures|Proteinase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | [[Category: Large Structures]] | ||
[[Category: Vibrio sp. PA-44]] | |||
[[Category: Arnorsdottir J]] | |||
== | [[Category: Ficner R]] | ||
< | [[Category: Kristjansson MM]] | ||
[[Category: | |||
[[Category: | |||
[[Category: | |||
[[Category: | |||
[[Category: | |||
Latest revision as of 07:53, 17 October 2024
Crystal structure of a cold adapted subtilisin-like serine proteinaseCrystal structure of a cold adapted subtilisin-like serine proteinase
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of a subtilisin-like serine proteinase from the psychrotrophic marine bacterium, Vibrio sp. PA-44, was solved by means of molecular replacement and refined at 1.84 A. This is the first structure of a cold-adapted subtilase to be determined and its elucidation facilitates examination of the molecular principles underlying temperature adaptation in enzymes. The cold-adapted Vibrio proteinase was compared with known three-dimensional structures of homologous enzymes of meso- and thermophilic origin, proteinase K and thermitase, to which it has high structural resemblance. The main structural features emerging as plausible determinants of temperature adaptation in the enzymes compared involve the character of their exposed and buried surfaces, which may be related to temperature-dependent variation in the physical properties of water. Thus, the hydrophobic effect is found to play a significant role in the structural stability of the meso- and thermophile enzymes, whereas the cold-adapted enzyme has more of its apolar surface exposed. In addition, the cold-adapted Vibrio proteinase is distinguished from the more stable enzymes by its strong anionic character arising from the high occurrence of uncompensated negatively charged residues at its surface. Interestingly, both the cold-adapted and thermophile proteinases differ from the mesophile enzyme in having more extensive hydrogen- and ion pair interactions in their structures; this supports suggestions of a dual role of electrostatic interactions in the adaptation of enzymes to both high and low temperatures. The Vibrio proteinase has three calcium ions associated with its structure, one of which is in a calcium-binding site not described in other subtilases. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.,Arnorsdottir J, Kristjansson MM, Ficner R FEBS J. 2005 Feb;272(3):832-45. PMID:15670163[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|