1gyu: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gyu ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gyu ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The AP1 complex is one of a family of heterotetrameric clathrin-adaptor complexes involved in vesicular trafficking between the Golgi and endosomes. The complex has two large subunits, gamma and beta1, which can be divided into trunk, hinge, and appendage domains. The 1.8 A resolution structure of the gamma appendage is presented. The binding site for the known gamma appendage ligand gamma-synergin is mapped through creation of point mutations designed on the basis of the structure. We also show that Eps15, a protein believed to be involved in vesicle formation at the plasma membrane, is also a ligand of gamma appendage and binds to the same site as gamma-synergin. This observation explains the demonstrated brefeldinA (BFA)-sensitive colocalization of Eps15 and AP1 at the Golgi complex. | |||
Gamma-adaptin appendage domain: structure and binding site for Eps15 and gamma-synergin.,Kent HM, McMahon HT, Evans PR, Benmerah A, Owen DJ Structure. 2002 Aug;10(8):1139-48. PMID:12176391<ref>PMID:12176391</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1gyu" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Adaptin 3D structures|Adaptin 3D structures]] | *[[Adaptin 3D structures|Adaptin 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Latest revision as of 11:52, 9 May 2024
Gamma-adaptin appendage domain from clathrin adaptor AP1Gamma-adaptin appendage domain from clathrin adaptor AP1
Structural highlights
FunctionAP1G1_MOUSE Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe AP1 complex is one of a family of heterotetrameric clathrin-adaptor complexes involved in vesicular trafficking between the Golgi and endosomes. The complex has two large subunits, gamma and beta1, which can be divided into trunk, hinge, and appendage domains. The 1.8 A resolution structure of the gamma appendage is presented. The binding site for the known gamma appendage ligand gamma-synergin is mapped through creation of point mutations designed on the basis of the structure. We also show that Eps15, a protein believed to be involved in vesicle formation at the plasma membrane, is also a ligand of gamma appendage and binds to the same site as gamma-synergin. This observation explains the demonstrated brefeldinA (BFA)-sensitive colocalization of Eps15 and AP1 at the Golgi complex. Gamma-adaptin appendage domain: structure and binding site for Eps15 and gamma-synergin.,Kent HM, McMahon HT, Evans PR, Benmerah A, Owen DJ Structure. 2002 Aug;10(8):1139-48. PMID:12176391[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|