4wf2: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of E. coli BirA G142A bound to biotinol-5'-AMP== | ==Structure of E. coli BirA G142A bound to biotinol-5'-AMP== | ||
<StructureSection load='4wf2' size='340' side='right' caption='[[4wf2]], [[Resolution|resolution]] 2.31Å' scene=''> | <StructureSection load='4wf2' size='340' side='right'caption='[[4wf2]], [[Resolution|resolution]] 2.31Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4wf2]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WF2 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[4wf2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WF2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4WF2 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BTX:((2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXY-TETRAHYDROFURAN-2-YL)METHYL+5-((3AS,4S,6AR)-2-OXO-HEXAHYDRO-1H-THIENO[3,4-D]IMIDAZOL-4-YL)PENTYL+HYDROGEN+PHOSPHATE'>BTX</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.31Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BTX:((2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXY-TETRAHYDROFURAN-2-YL)METHYL+5-((3AS,4S,6AR)-2-OXO-HEXAHYDRO-1H-THIENO[3,4-D]IMIDAZOL-4-YL)PENTYL+HYDROGEN+PHOSPHATE'>BTX</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4wf2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4wf2 OCA], [https://pdbe.org/4wf2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4wf2 RCSB], [https://www.ebi.ac.uk/pdbsum/4wf2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4wf2 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/BIRA_ECOLI BIRA_ECOLI] Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon.<ref>PMID:6129246</ref> <ref>PMID:2667763</ref> <ref>PMID:8003500</ref> <ref>PMID:12527300</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Intrinsic disorder provides a means of maximizing allosteric coupling in proteins. However, the mechanisms by which the disorder functions in allostery remain to be elucidated. Small ligand, bio-5'-AMP, binding and dimerization of the Escherichiacoli biotin repressor are allosterically coupled. Folding of a disordered loop in the allosteric effector binding site is required to realize the full coupling free energy of -4.0+/-0.3kcal/mol observed in the wild-type protein. Alanine substitution of a glycine residue on the dimerization surface that does not directly contribute to the dimerization interface completely abolishes this coupling. In this work, the structure of this variant, solved by X-ray crystallography, reveals a monomeric corepressor-bound protein. In the structure loops, neither of which contains the alanine substitution, on both the dimerization and effector binding surfaces that are folded in the corepressor-bound wild-type protein are disordered. The structural data combined with functional measurements indicate that allosteric coupling between ligand binding and dimerization in BirA (E. coli biotin repressor/biotin protein ligase) is achieved via reciprocal communication of disorder-to-order transitions on two distant functional surfaces. | |||
Allosteric Coupling via Distant Disorder-to-Order Transitions.,Eginton C, Cressman WJ, Bachas S, Wade H, Beckett D J Mol Biol. 2015 Mar 4. pii: S0022-2836(15)00155-2. doi:, 10.1016/j.jmb.2015.02.021. PMID:25746672<ref>PMID:25746672</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4wf2" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Biotin Protein Ligase 3D structures|Biotin Protein Ligase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Escherichia coli K-12]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Beckett D]] | ||
[[Category: | [[Category: Eginton C]] | ||
[[Category: | [[Category: Wade H]] | ||