5onf: Difference between revisions
m Protected "5onf" [edit=sysop:move=sysop] |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==The ENTH domain from epsin-1== | ||
<StructureSection load='5onf' size='340' side='right'caption='[[5onf]], [[Resolution|resolution]] 2.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[5onf]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ONF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5ONF FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5onf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5onf OCA], [https://pdbe.org/5onf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5onf RCSB], [https://www.ebi.ac.uk/pdbsum/5onf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5onf ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ENT1_YEAST ENT1_YEAST] Binds to membranes enriched in phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Required for endocytosis and localization of actin. Negatively regulated via phosphorylation.<ref>PMID:10449404</ref> <ref>PMID:11694597</ref> <ref>PMID:12529323</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In clathrin-mediated endocytosis, adapter proteins assemble together with clathrin through interactions with specific lipids on the plasma membrane. However, the precise mechanism of adapter protein assembly at the cell membrane is still unknown. Here, we show that the membrane-proximal domains ENTH of epsin and ANTH of Sla2 form complexes through phosphatidylinositol 4,5-bisphosphate (PIP2) lipid interfaces. Native mass spectrometry reveals how ENTH and ANTH domains form assemblies by sharing PIP2 molecules. Furthermore, crystal structures of epsin Ent2 ENTH domain from S. cerevisiae in complex with PIP2 and Sla2 ANTH domain from C. thermophilum illustrate how allosteric phospholipid binding occurs. A comparison with human ENTH and ANTH domains reveal only the human ENTH domain can form a stable hexameric core in presence of PIP2, which could explain functional differences between fungal and human epsins. We propose a general phospholipid-driven multifaceted assembly mechanism tolerating different adapter protein compositions to induce endocytosis. | |||
Epsin and Sla2 form assemblies through phospholipid interfaces.,Garcia-Alai MM, Heidemann J, Skruzny M, Gieras A, Mertens HDT, Svergun DI, Kaksonen M, Uetrecht C, Meijers R Nat Commun. 2018 Jan 23;9(1):328. doi: 10.1038/s41467-017-02443-x. PMID:29362354<ref>PMID:29362354</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 5onf" style="background-color:#fffaf0;"></div> | ||
[[Category: | |||
[[Category: Meijers | ==See Also== | ||
*[[Epsin|Epsin]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Saccharomyces cerevisiae S288C]] | |||
[[Category: GIeras A]] | |||
[[Category: Garcia-Alai M]] | |||
[[Category: Meijers R]] |
Latest revision as of 19:55, 13 December 2023
The ENTH domain from epsin-1The ENTH domain from epsin-1
Structural highlights
FunctionENT1_YEAST Binds to membranes enriched in phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Required for endocytosis and localization of actin. Negatively regulated via phosphorylation.[1] [2] [3] Publication Abstract from PubMedIn clathrin-mediated endocytosis, adapter proteins assemble together with clathrin through interactions with specific lipids on the plasma membrane. However, the precise mechanism of adapter protein assembly at the cell membrane is still unknown. Here, we show that the membrane-proximal domains ENTH of epsin and ANTH of Sla2 form complexes through phosphatidylinositol 4,5-bisphosphate (PIP2) lipid interfaces. Native mass spectrometry reveals how ENTH and ANTH domains form assemblies by sharing PIP2 molecules. Furthermore, crystal structures of epsin Ent2 ENTH domain from S. cerevisiae in complex with PIP2 and Sla2 ANTH domain from C. thermophilum illustrate how allosteric phospholipid binding occurs. A comparison with human ENTH and ANTH domains reveal only the human ENTH domain can form a stable hexameric core in presence of PIP2, which could explain functional differences between fungal and human epsins. We propose a general phospholipid-driven multifaceted assembly mechanism tolerating different adapter protein compositions to induce endocytosis. Epsin and Sla2 form assemblies through phospholipid interfaces.,Garcia-Alai MM, Heidemann J, Skruzny M, Gieras A, Mertens HDT, Svergun DI, Kaksonen M, Uetrecht C, Meijers R Nat Commun. 2018 Jan 23;9(1):328. doi: 10.1038/s41467-017-02443-x. PMID:29362354[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|