2whv: Difference between revisions
New page: '''Unreleased structure''' The entry 2whv is ON HOLD Authors: Sotomayor, M., Weihofen, W., Gaudet, R., Corey, D.P. Description: CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 (ALL CATION... |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 (ALL CATION BINDING SITES OCCUPIED BY CALCIUM)== | ||
<StructureSection load='2whv' size='340' side='right'caption='[[2whv]], [[Resolution|resolution]] 2.36Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2whv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WHV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WHV FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.36Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2whv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2whv OCA], [https://pdbe.org/2whv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2whv RCSB], [https://www.ebi.ac.uk/pdbsum/2whv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2whv ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/CAD23_MOUSE CAD23_MOUSE] Defects in Cdh23 are the cause of waltzer (v) phenotype. Waltzer mice are characterized by deafness and vestibular dysfunction due to degeneration of the neuroepithelium within the inner ear. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CAD23_MOUSE CAD23_MOUSE] Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells. CDH23 is required for establishing and/or maintaining the proper organization of the stereocilia bundle of hair cells in the cochlea and the vestibule during late embryonic/early postnatal development. It is part of the functional network formed by USH1C, USH1G, CDH23 and MYO7A that mediates mechanotransduction in cochlear hair cells. Required for normal hearing.<ref>PMID:11138008</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wh/2whv_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2whv ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca(2+)-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca(2+) affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca(2+) or mutating Ca(2+)-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link. | |||
Structural determinants of cadherin-23 function in hearing and deafness.,Sotomayor M, Weihofen WA, Gaudet R, Corey DP Neuron. 2010 Apr 15;66(1):85-100. PMID:20399731<ref>PMID:20399731</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2whv" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Cadherin 3D structures|Cadherin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | |||
[[Category: Corey DP]] | |||
[[Category: Gaudet R]] | |||
[[Category: Sotomayor M]] | |||
[[Category: Weihofen W]] |
Latest revision as of 18:57, 13 December 2023
CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 (ALL CATION BINDING SITES OCCUPIED BY CALCIUM)CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 (ALL CATION BINDING SITES OCCUPIED BY CALCIUM)
Structural highlights
DiseaseCAD23_MOUSE Defects in Cdh23 are the cause of waltzer (v) phenotype. Waltzer mice are characterized by deafness and vestibular dysfunction due to degeneration of the neuroepithelium within the inner ear. FunctionCAD23_MOUSE Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells. CDH23 is required for establishing and/or maintaining the proper organization of the stereocilia bundle of hair cells in the cochlea and the vestibule during late embryonic/early postnatal development. It is part of the functional network formed by USH1C, USH1G, CDH23 and MYO7A that mediates mechanotransduction in cochlear hair cells. Required for normal hearing.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca(2+)-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca(2+) affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca(2+) or mutating Ca(2+)-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link. Structural determinants of cadherin-23 function in hearing and deafness.,Sotomayor M, Weihofen WA, Gaudet R, Corey DP Neuron. 2010 Apr 15;66(1):85-100. PMID:20399731[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|