2cdt: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==alpha-SPECTRIN SH3 DOMAIN A56S MUTANT== | ||
<StructureSection load='2cdt' size='340' side='right'caption='[[2cdt]], [[Resolution|resolution]] 2.54Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2cdt]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2CDT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2CDT FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.54Å</td></tr> | |||
-- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2cdt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2cdt OCA], [https://pdbe.org/2cdt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2cdt RCSB], [https://www.ebi.ac.uk/pdbsum/2cdt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2cdt ProSAT]</span></td></tr> | ||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SPTN1_CHICK SPTN1_CHICK] Morphologically, spectrin-like proteins appear to be related to spectrin, showing a flexible rod-like structure. They can bind actin but seem to differ in their calmodulin-binding activity. In nonerythroid tissues, spectrins, in association with some other proteins, may play an important role in membrane organization. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cd/2cdt_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2cdt ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Site-directed mutagenesis has been used to produce local stability changes at two regions of the binding site surface of the alpha-spectrin SH3 domain (Spc-SH3) differing in their intrinsic stability. Mutations were made at residue 56, located at the solvent-exposed side of the short 3(10) helix, and at residue 21 in the tip of the flexible RT-loop. NMR chemical-shift analysis and X-ray crystallography indicated negligible changes produced by the mutations in the native structure limited to subtle rearrangements near the mutated residue and at flexible loops. Additionally, mutations do not alter importantly the SH3 binding site structure, although produce significant changes in its affinity for a proline-rich decapeptide. The changes in global stability measured by differential scanning calorimetry are consistent the local energy changes predicted by theoretical models, with the most significant effects observed for the Ala-Gly mutations. Propagation of the local stability changes throughout the domain structure has been studied at a per-residue level of resolution by NMR-detected amide hydrogen-deuterium exchange (HX). Stability propagation is remarkably efficient in this small domain, apparently due to its intrinsically low stability. Nevertheless, the HX-core of the domain is not fully cooperative, indicating the existence of co-operative subunits within the core, which is markedly polarized. An equilibrium phi-analysis of the changes in the apparent Gibbs energies of HX per residue produced by the mutations has allowed us to characterize structurally the conformational states leading to HX. Some of these states resemble notably the folding transition state of the Spc-SH3 domain, suggesting a great potential of this approach to explore the folding energy landscape of proteins. An energy perturbation propagates more effectively from a flexible region to the core than in the opposite direction, because the former affects a broader region of the energy landscape than the latter. This might be of importance in understanding the special thermodynamic signature of the SH3-peptide interaction and the relevance of the dual character of SH3 binding sites. | |||
Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain.,Casares S, Lopez-Mayorga O, Vega MC, Camara-Artigas A, Conejero-Lara F Proteins. 2007 May 15;67(3):531-47. PMID:17330285<ref>PMID:17330285</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2cdt" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Spectrin 3D structures|Spectrin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
== | |||
< | |||
[[Category: Gallus gallus]] | [[Category: Gallus gallus]] | ||
[[Category: Camara-Artigas | [[Category: Large Structures]] | ||
[[Category: Casares | [[Category: Camara-Artigas A]] | ||
[[Category: Conejero-Lara | [[Category: Casares S]] | ||
[[Category: Lopez-Mayorga | [[Category: Conejero-Lara F]] | ||
[[Category: Vega | [[Category: Lopez-Mayorga O]] | ||
[[Category: Vega MC]] | |||
Latest revision as of 17:14, 13 December 2023
alpha-SPECTRIN SH3 DOMAIN A56S MUTANTalpha-SPECTRIN SH3 DOMAIN A56S MUTANT
Structural highlights
FunctionSPTN1_CHICK Morphologically, spectrin-like proteins appear to be related to spectrin, showing a flexible rod-like structure. They can bind actin but seem to differ in their calmodulin-binding activity. In nonerythroid tissues, spectrins, in association with some other proteins, may play an important role in membrane organization. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSite-directed mutagenesis has been used to produce local stability changes at two regions of the binding site surface of the alpha-spectrin SH3 domain (Spc-SH3) differing in their intrinsic stability. Mutations were made at residue 56, located at the solvent-exposed side of the short 3(10) helix, and at residue 21 in the tip of the flexible RT-loop. NMR chemical-shift analysis and X-ray crystallography indicated negligible changes produced by the mutations in the native structure limited to subtle rearrangements near the mutated residue and at flexible loops. Additionally, mutations do not alter importantly the SH3 binding site structure, although produce significant changes in its affinity for a proline-rich decapeptide. The changes in global stability measured by differential scanning calorimetry are consistent the local energy changes predicted by theoretical models, with the most significant effects observed for the Ala-Gly mutations. Propagation of the local stability changes throughout the domain structure has been studied at a per-residue level of resolution by NMR-detected amide hydrogen-deuterium exchange (HX). Stability propagation is remarkably efficient in this small domain, apparently due to its intrinsically low stability. Nevertheless, the HX-core of the domain is not fully cooperative, indicating the existence of co-operative subunits within the core, which is markedly polarized. An equilibrium phi-analysis of the changes in the apparent Gibbs energies of HX per residue produced by the mutations has allowed us to characterize structurally the conformational states leading to HX. Some of these states resemble notably the folding transition state of the Spc-SH3 domain, suggesting a great potential of this approach to explore the folding energy landscape of proteins. An energy perturbation propagates more effectively from a flexible region to the core than in the opposite direction, because the former affects a broader region of the energy landscape than the latter. This might be of importance in understanding the special thermodynamic signature of the SH3-peptide interaction and the relevance of the dual character of SH3 binding sites. Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain.,Casares S, Lopez-Mayorga O, Vega MC, Camara-Artigas A, Conejero-Lara F Proteins. 2007 May 15;67(3):531-47. PMID:17330285[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|