1e6g: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==A-SPECTRIN SH3 DOMAIN A11V, V23L, M25I, V53I, V58L MUTANT== | |||
<StructureSection load='1e6g' size='340' side='right'caption='[[1e6g]], [[Resolution|resolution]] 2.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1e6g]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E6G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1E6G FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e6g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e6g OCA], [https://pdbe.org/1e6g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e6g RCSB], [https://www.ebi.ac.uk/pdbsum/1e6g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e6g ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SPTN1_CHICK SPTN1_CHICK] Morphologically, spectrin-like proteins appear to be related to spectrin, showing a flexible rod-like structure. They can bind actin but seem to differ in their calmodulin-binding activity. In nonerythroid tissues, spectrins, in association with some other proteins, may play an important role in membrane organization. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e6/1e6g_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1e6g ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We have designed de novo 13 divergent spectrin SH3 core sequences to determine their folding properties. Kinetic analysis of the variants with stability similar to that of the wild type protein shows accelerated unfolding and refolding rates compatible with a preferential stabilization of the transition state. This is most likely caused by conformational strain in the native state, as deletion of a methyl group (Ile-->Val) leads to deceleration in unfolding and increased stability (up to 2 kcal x mol(-1)). Several of these Ile-->Val mutants have negative phi(-U) values, indicating that some noncanonical phi(-U) values might result from conformational strain. Thus, producing a stable protein does not necessarily mean that the design process has been entirely successful. Strained interactions could have been introduced, and a reduction in the buried volume could result in a large increase in stability and a reduction in unfolding rates. | |||
Conformational strain in the hydrophobic core and its implications for protein folding and design.,Ventura S, Vega MC, Lacroix E, Angrand I, Spagnolo L, Serrano L Nat Struct Biol. 2002 Jun;9(6):485-93. PMID:12006985<ref>PMID:12006985</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1e6g" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Spectrin|Spectrin]] | *[[Spectrin 3D structures|Spectrin 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Gallus gallus]] | [[Category: Gallus gallus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Serrano L]] | ||
[[Category: | [[Category: Vega MC]] | ||
Latest revision as of 14:53, 13 December 2023
A-SPECTRIN SH3 DOMAIN A11V, V23L, M25I, V53I, V58L MUTANTA-SPECTRIN SH3 DOMAIN A11V, V23L, M25I, V53I, V58L MUTANT
Structural highlights
FunctionSPTN1_CHICK Morphologically, spectrin-like proteins appear to be related to spectrin, showing a flexible rod-like structure. They can bind actin but seem to differ in their calmodulin-binding activity. In nonerythroid tissues, spectrins, in association with some other proteins, may play an important role in membrane organization. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have designed de novo 13 divergent spectrin SH3 core sequences to determine their folding properties. Kinetic analysis of the variants with stability similar to that of the wild type protein shows accelerated unfolding and refolding rates compatible with a preferential stabilization of the transition state. This is most likely caused by conformational strain in the native state, as deletion of a methyl group (Ile-->Val) leads to deceleration in unfolding and increased stability (up to 2 kcal x mol(-1)). Several of these Ile-->Val mutants have negative phi(-U) values, indicating that some noncanonical phi(-U) values might result from conformational strain. Thus, producing a stable protein does not necessarily mean that the design process has been entirely successful. Strained interactions could have been introduced, and a reduction in the buried volume could result in a large increase in stability and a reduction in unfolding rates. Conformational strain in the hydrophobic core and its implications for protein folding and design.,Ventura S, Vega MC, Lacroix E, Angrand I, Spagnolo L, Serrano L Nat Struct Biol. 2002 Jun;9(6):485-93. PMID:12006985[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|