7ckh: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of TMSiPheRS== | ==Crystal structure of TMSiPheRS== | ||
<StructureSection load='7ckh' size='340' side='right'caption='[[7ckh]]' scene=''> | <StructureSection load='7ckh' size='340' side='right'caption='[[7ckh]], [[Resolution|resolution]] 1.79Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7CKH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7CKH FirstGlance]. <br> | <table><tr><td colspan='2'>[[7ckh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanocaldococcus_jannaschii_DSM_2661 Methanocaldococcus jannaschii DSM 2661]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7CKH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7CKH FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ckh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ckh OCA], [https://pdbe.org/7ckh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ckh RCSB], [https://www.ebi.ac.uk/pdbsum/7ckh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ckh ProSAT]</span></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7949268Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ckh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ckh OCA], [https://pdbe.org/7ckh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ckh RCSB], [https://www.ebi.ac.uk/pdbsum/7ckh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ckh ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/SYY_METJA SYY_METJA] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).<ref>PMID:10585437</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field (1)H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-beta2 adrenergic receptor/beta-arrestin-1(beta-arr1) membrane protein signaling complex, using only 5 muM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of beta-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin. | |||
DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl (1)H-NMR probe.,Liu Q, He QT, Lyu X, Yang F, Zhu ZL, Xiao P, Yang Z, Zhang F, Yang ZY, Wang XY, Sun P, Wang QW, Qu CX, Gong Z, Lin JY, Xu Z, Song SL, Huang SM, Guo SC, Han MJ, Zhu KK, Chen X, Kahsai AW, Xiao KH, Kong W, Li FH, Ruan K, Li ZJ, Yu X, Niu XG, Jin CW, Wang J, Sun JP Nat Commun. 2020 Sep 25;11(1):4857. doi: 10.1038/s41467-020-18433-5. PMID:32978402<ref>PMID:32978402</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7ckh" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Aminoacyl tRNA synthetase 3D structures|Aminoacyl tRNA synthetase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Methanocaldococcus jannaschii DSM 2661]] | |||
[[Category: He QT]] | [[Category: He QT]] | ||
[[Category: Sun JP]] | [[Category: Sun JP]] |
Latest revision as of 19:10, 29 November 2023
Crystal structure of TMSiPheRSCrystal structure of TMSiPheRS
Structural highlights
FunctionSYY_METJA Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).[1] Publication Abstract from PubMedCharacterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field (1)H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-beta2 adrenergic receptor/beta-arrestin-1(beta-arr1) membrane protein signaling complex, using only 5 muM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of beta-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl (1)H-NMR probe.,Liu Q, He QT, Lyu X, Yang F, Zhu ZL, Xiao P, Yang Z, Zhang F, Yang ZY, Wang XY, Sun P, Wang QW, Qu CX, Gong Z, Lin JY, Xu Z, Song SL, Huang SM, Guo SC, Han MJ, Zhu KK, Chen X, Kahsai AW, Xiao KH, Kong W, Li FH, Ruan K, Li ZJ, Yu X, Niu XG, Jin CW, Wang J, Sun JP Nat Commun. 2020 Sep 25;11(1):4857. doi: 10.1038/s41467-020-18433-5. PMID:32978402[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|