7c6b: Difference between revisions
m Protected "7c6b" [edit=sysop:move=sysop] |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal structure of Ago2 MID domain in complex with 6-(3-(2-carboxyethyl)phenyl)purine riboside monophosphate== | ||
<StructureSection load='7c6b' size='340' side='right'caption='[[7c6b]], [[Resolution|resolution]] 1.70Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[7c6b]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7C6B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7C6B FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=K2R:3-[3-[9-[(2R,3R,4S,5R)-3,4-bis(oxidanyl)-5-(phosphonooxymethyl)oxolan-2-yl]purin-6-yl]phenyl]propanoic+acid'>K2R</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7c6b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7c6b OCA], [https://pdbe.org/7c6b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7c6b RCSB], [https://www.ebi.ac.uk/pdbsum/7c6b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7c6b ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/AGO2_HUMAN AGO2_HUMAN] Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). The 'minimal RISC' appears to include EIF2C2/AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the mRNA specifically by EIF2C2/AGO2. Binding of RISC to a partially complementary mRNA results in silencing through inhibition of translation, and this is independent of endonuclease activity. May inhibit translation initiation by binding to the 7-methylguanosine cap, thereby preventing the recruitment of the translation initiation factor eIF4-E. May also inhibit translation initiation via interaction with EIF6, which itself binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The inhibition of translational initiation leads to the accumulation of the affected mRNA in cytoplasmic processing bodies (P-bodies), where mRNA degradation may subsequently occur. In some cases RISC-mediated translational repression is also observed for miRNAs that perfectly match the 3' untranslated region (3'-UTR). Can also up-regulate the translation of specific mRNAs under certain growth conditions. Binds to the AU element of the 3'-UTR of the TNF (TNF-alpha) mRNA and up-regulates translation under conditions of serum starvation. Also required for transcriptional gene silencing (TGS), in which short RNAs known as antigene RNAs or agRNAs direct the transcriptional repression of complementary promoter regions.<ref>PMID:15105377</ref> <ref>PMID:15260970</ref> <ref>PMID:15337849</ref> <ref>PMID:15284456</ref> <ref>PMID:16271387</ref> <ref>PMID:16289642</ref> <ref>PMID:16142218</ref> <ref>PMID:16357216</ref> <ref>PMID:15800637</ref> <ref>PMID:16081698</ref> <ref>PMID:16936728</ref> <ref>PMID:16756390</ref> <ref>PMID:17382880</ref> <ref>PMID:17524464</ref> <ref>PMID:17932509</ref> <ref>PMID:17531811</ref> <ref>PMID:17507929</ref> <ref>PMID:18048652</ref> <ref>PMID:18771919</ref> <ref>PMID:18690212</ref> <ref>PMID:18178619</ref> <ref>PMID:19167051</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Small interfering RNAs (siRNAs) can be utilized not only as functional biological research tools but also as therapeutic agents. For the clinical use of siRNA as drugs, various chemical modifications have been employed to improve the activity of siRNA drugs, and further chemical modifications are expected to improve the utility of siRNA therapeutics. As the 5' nucleobase of the guide strand affects the interaction between an siRNA and AGO2 and target cleavage activity, structural optimization of this specific position may be a useful strategy for improving siRNA activity. Here, using the in silico model of the complex between human AGO2 MID domain and nucleoside monophosphates, we screened and synthesized an original adenine-derived analogue, 6-(3-(2-carboxyethyl)phenyl)purine (6-mCEPh-purine), that fits better than the natural nucleotide bases into the MID domain of AGO2. Introduction of the 6-mCEPh-purine analogue at the 5'-end of the siRNA guide strand significantly enhanced target knockdown activity in both cultured cell lines and in vivo animal models. Our findings can help expand strategies for rationally optimizing siRNA activity via chemical modifications of nucleotide bases. | |||
siRNA potency enhancement via chemical modifications of nucleotide bases at the 5'-end of the siRNA guide strand.,Shinohara F, Oashi T, Harumoto T, Nishikawa T, Takayama Y, Miyagi H, Takahashi Y, Nakajima T, Sawada T, Koda Y, Makino A, Sato A, Hamaguch K, Suzuki M, Yamamoto J, Tomari Y, Saito JI RNA. 2020 Nov 11. pii: rna.073783.119. doi: 10.1261/rna.073783.119. PMID:33177188<ref>PMID:33177188</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 7c6b" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Argonaute 3D structures|Argonaute 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Miyagi H]] | |||
[[Category: Saito J]] | |||
[[Category: Shinohara F]] | |||
[[Category: Suzuki M]] | |||
[[Category: Takahashi Y]] |
Latest revision as of 18:57, 29 November 2023
Crystal structure of Ago2 MID domain in complex with 6-(3-(2-carboxyethyl)phenyl)purine riboside monophosphateCrystal structure of Ago2 MID domain in complex with 6-(3-(2-carboxyethyl)phenyl)purine riboside monophosphate
Structural highlights
FunctionAGO2_HUMAN Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). The 'minimal RISC' appears to include EIF2C2/AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the mRNA specifically by EIF2C2/AGO2. Binding of RISC to a partially complementary mRNA results in silencing through inhibition of translation, and this is independent of endonuclease activity. May inhibit translation initiation by binding to the 7-methylguanosine cap, thereby preventing the recruitment of the translation initiation factor eIF4-E. May also inhibit translation initiation via interaction with EIF6, which itself binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The inhibition of translational initiation leads to the accumulation of the affected mRNA in cytoplasmic processing bodies (P-bodies), where mRNA degradation may subsequently occur. In some cases RISC-mediated translational repression is also observed for miRNAs that perfectly match the 3' untranslated region (3'-UTR). Can also up-regulate the translation of specific mRNAs under certain growth conditions. Binds to the AU element of the 3'-UTR of the TNF (TNF-alpha) mRNA and up-regulates translation under conditions of serum starvation. Also required for transcriptional gene silencing (TGS), in which short RNAs known as antigene RNAs or agRNAs direct the transcriptional repression of complementary promoter regions.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] Publication Abstract from PubMedSmall interfering RNAs (siRNAs) can be utilized not only as functional biological research tools but also as therapeutic agents. For the clinical use of siRNA as drugs, various chemical modifications have been employed to improve the activity of siRNA drugs, and further chemical modifications are expected to improve the utility of siRNA therapeutics. As the 5' nucleobase of the guide strand affects the interaction between an siRNA and AGO2 and target cleavage activity, structural optimization of this specific position may be a useful strategy for improving siRNA activity. Here, using the in silico model of the complex between human AGO2 MID domain and nucleoside monophosphates, we screened and synthesized an original adenine-derived analogue, 6-(3-(2-carboxyethyl)phenyl)purine (6-mCEPh-purine), that fits better than the natural nucleotide bases into the MID domain of AGO2. Introduction of the 6-mCEPh-purine analogue at the 5'-end of the siRNA guide strand significantly enhanced target knockdown activity in both cultured cell lines and in vivo animal models. Our findings can help expand strategies for rationally optimizing siRNA activity via chemical modifications of nucleotide bases. siRNA potency enhancement via chemical modifications of nucleotide bases at the 5'-end of the siRNA guide strand.,Shinohara F, Oashi T, Harumoto T, Nishikawa T, Takayama Y, Miyagi H, Takahashi Y, Nakajima T, Sawada T, Koda Y, Makino A, Sato A, Hamaguch K, Suzuki M, Yamamoto J, Tomari Y, Saito JI RNA. 2020 Nov 11. pii: rna.073783.119. doi: 10.1261/rna.073783.119. PMID:33177188[23] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|