4yps: Difference between revisions
m Protected "4yps" [edit=sysop:move=sysop] |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==(R)-2-Phenylpyrrolidine Substitute Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors== | |||
<StructureSection load='4yps' size='340' side='right'caption='[[4yps]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4yps]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4YPS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4YPS FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1012Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4F6:4-{6-[(3R)-3-(3-FLUOROPHENYL)MORPHOLIN-4-YL]IMIDAZO[1,2-B]PYRIDAZIN-3-YL}BENZONITRILE'>4F6</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4yps FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4yps OCA], [https://pdbe.org/4yps PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4yps RCSB], [https://www.ebi.ac.uk/pdbsum/4yps PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4yps ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/NTRK1_HUMAN NTRK1_HUMAN] Defects in NTRK1 are a cause of congenital insensitivity to pain with anhidrosis (CIPA) [MIM:[https://omim.org/entry/256800 256800]. CIPA is characterized by a congenital insensitivity to pain, anhidrosis (absence of sweating), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. This rare autosomal recessive disorder is also known as congenital sensory neuropathy with anhidrosis or hereditary sensory and autonomic neuropathy type IV or familial dysautonomia type II.<ref>PMID:8696348</ref> <ref>PMID:10090906</ref> <ref>PMID:10330344</ref> <ref>PMID:10233776</ref> <ref>PMID:10861667</ref> <ref>PMID:10982191</ref> <ref>PMID:10567924</ref> <ref>PMID:11310631</ref> <ref>PMID:11159935</ref> <ref>PMID:22302274</ref> Defects in NTRK1 are a cause of thyroid papillary carcinoma (TPC) [MIM:[https://omim.org/entry/188550 188550]. TPC is a common tumor of the thyroid that typically arises as an irregular, solid or cystic mass from otherwise normal thyroid tissue. Papillary carcinomas are malignant neoplasm characterized by the formation of numerous, irregular, finger-like projections of fibrous stroma that is covered with a surface layer of neoplastic epithelial cells. Note=Chromosomal aberrations involving NTRK1 are found in thyroid papillary carcinomas. Translocation t(1;3)(q21;q11) with TFG generates the TRKT3 (TRK-T3) transcript by fusing TFG to the 3'-end of NTRK1; a rearrangement with TPM3 generates the TRK transcript by fusing TPM3 to the 3'-end of NTRK1; an intrachromosomal rearrangement that links the protein kinase domain of NTRK1 to the 5'-end of the TPR gene forms the fusion protein TRK-T1. TRK-T1 is a 55 kDa protein reacting with antibodies against the C-terminus of the NTRK1 protein. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/NTRK1_HUMAN NTRK1_HUMAN] Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Deregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization. Structure guided drug design led to the identification of (R)-2-phenylpyrrolidine substituted imidazopyridazines as a series of potent, selective, orally bioavailable pan-TRK inhibitors achieving tumor regression in rats bearing KM12 xenografts. From this work the (R)-2-phenylpyrrolidine has emerged as an ideal moiety to incorporate in bicyclic TRK inhibitors by virtue of its shape complementarity to the hydrophobic pocket of TRKs. | |||
(R)-2-Phenylpyrrolidine Substituted Imidazopyridazines: A New Class of Potent and Selective Pan-TRK Inhibitors.,Choi HS, Rucker PV, Wang Z, Fan Y, Albaugh P, Chopiuk G, Gessier F, Sun F, Adrian F, Liu G, Hood T, Li N, Jia Y, Che J, McCormack S, Li A, Li J, Steffy A, Culazzo A, Tompkins C, Phung V, Kreusch A, Lu M, Hu B, Chaudhary A, Prashad M, Tuntland T, Liu B, Harris J, Seidel HM, Loren J, Molteni V ACS Med Chem Lett. 2015 Mar 16;6(5):562-7. doi: 10.1021/acsmedchemlett.5b00050., eCollection 2015 May 14. PMID:26005534<ref>PMID:26005534</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: Kreusch | <div class="pdbe-citations 4yps" style="background-color:#fffaf0;"></div> | ||
[[Category: | |||
[[Category: | ==See Also== | ||
[[Category: Rucker | *[[High affinity nerve growth factor receptor|High affinity nerve growth factor receptor]] | ||
*[[Tyrosine kinase receptor|Tyrosine kinase receptor]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Kreusch A]] | |||
[[Category: Loren J]] | |||
[[Category: Molteni V]] | |||
[[Category: Rucker P]] |
Latest revision as of 11:03, 27 September 2023
(R)-2-Phenylpyrrolidine Substitute Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors(R)-2-Phenylpyrrolidine Substitute Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors
Structural highlights
DiseaseNTRK1_HUMAN Defects in NTRK1 are a cause of congenital insensitivity to pain with anhidrosis (CIPA) [MIM:256800. CIPA is characterized by a congenital insensitivity to pain, anhidrosis (absence of sweating), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. This rare autosomal recessive disorder is also known as congenital sensory neuropathy with anhidrosis or hereditary sensory and autonomic neuropathy type IV or familial dysautonomia type II.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Defects in NTRK1 are a cause of thyroid papillary carcinoma (TPC) [MIM:188550. TPC is a common tumor of the thyroid that typically arises as an irregular, solid or cystic mass from otherwise normal thyroid tissue. Papillary carcinomas are malignant neoplasm characterized by the formation of numerous, irregular, finger-like projections of fibrous stroma that is covered with a surface layer of neoplastic epithelial cells. Note=Chromosomal aberrations involving NTRK1 are found in thyroid papillary carcinomas. Translocation t(1;3)(q21;q11) with TFG generates the TRKT3 (TRK-T3) transcript by fusing TFG to the 3'-end of NTRK1; a rearrangement with TPM3 generates the TRK transcript by fusing TPM3 to the 3'-end of NTRK1; an intrachromosomal rearrangement that links the protein kinase domain of NTRK1 to the 5'-end of the TPR gene forms the fusion protein TRK-T1. TRK-T1 is a 55 kDa protein reacting with antibodies against the C-terminus of the NTRK1 protein. FunctionNTRK1_HUMAN Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.[11] [12] [13] [14] [15] [16] Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.[17] [18] [19] [20] [21] [22] Publication Abstract from PubMedDeregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization. Structure guided drug design led to the identification of (R)-2-phenylpyrrolidine substituted imidazopyridazines as a series of potent, selective, orally bioavailable pan-TRK inhibitors achieving tumor regression in rats bearing KM12 xenografts. From this work the (R)-2-phenylpyrrolidine has emerged as an ideal moiety to incorporate in bicyclic TRK inhibitors by virtue of its shape complementarity to the hydrophobic pocket of TRKs. (R)-2-Phenylpyrrolidine Substituted Imidazopyridazines: A New Class of Potent and Selective Pan-TRK Inhibitors.,Choi HS, Rucker PV, Wang Z, Fan Y, Albaugh P, Chopiuk G, Gessier F, Sun F, Adrian F, Liu G, Hood T, Li N, Jia Y, Che J, McCormack S, Li A, Li J, Steffy A, Culazzo A, Tompkins C, Phung V, Kreusch A, Lu M, Hu B, Chaudhary A, Prashad M, Tuntland T, Liu B, Harris J, Seidel HM, Loren J, Molteni V ACS Med Chem Lett. 2015 Mar 16;6(5):562-7. doi: 10.1021/acsmedchemlett.5b00050., eCollection 2015 May 14. PMID:26005534[23] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|