4qos: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4qos]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QOS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QOS FirstGlance]. <br> | <table><tr><td colspan='2'>[[4qos]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QOS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QOS FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.42Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qos FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qos OCA], [https://pdbe.org/4qos PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qos RCSB], [https://www.ebi.ac.uk/pdbsum/4qos PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qos ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qos FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qos OCA], [https://pdbe.org/4qos PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qos RCSB], [https://www.ebi.ac.uk/pdbsum/4qos PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qos ProSAT]</span></td></tr> | ||
</table> | </table> |
Latest revision as of 20:34, 20 September 2023
CRYSTAL STRUCTURE OF PSPF(1-265) E108Q MUTANT bound to ADPCRYSTAL STRUCTURE OF PSPF(1-265) E108Q MUTANT bound to ADP
Structural highlights
FunctionPSPF_ECOLI Transcriptional activator for the phage shock protein (psp) operon (pspABCDE) and pspG gene.[1] [2] [3] Publication Abstract from PubMedBinding and hydrolysis of ATP is universally required by AAA+ proteins to underpin their mechano-chemical work. Here we explore the roles of the ATPase site in an AAA+ transcriptional activator protein, the phage shock protein F (PspF), by specifically altering the Walker B motif sequence required in catalyzing ATP hydrolysis. One such mutant, the E108Q variant, is defective in ATP hydrolysis but fully remodels target transcription complexes, the RNAP-sigma54 holoenzyme, in an ATP dependent manner. Structural analysis of the E108Q variant reveals that unlike wild-type protein, which has distinct conformations for E108 residue in the ATP and ADP bound forms, E108Q adapts the same conformation irrespective of nucleotide bound. Our data show that the remodeling activities of E108Q are strongly favored on pre-melted DNA and engagement with RNAP-sigma54 using ATP binding can be sufficient to convert the inactive holoenzyme to an active form, while hydrolysis per se is required for nucleic acid remodeling that leads to transcription bubble formation. Furthermore, using linked dimer constructs, we show that RNAP-sigma54 engagement by adjacent subunits within a hexamer are required for this protein remodeling activity while DNA remodeling activity can tolerate defective ATP hydrolysis of alternating subunits. Molecular basis of nucleotide-dependent substrate engagement and remodeling by an AAA+ activator.,Darbari VC, Lawton E, Lu D, Burrows PC, Wiesler S, Joly N, Zhang N, Zhang X, Buck M Nucleic Acids Res. 2014 Jul 25. pii: gku588. PMID:25063294[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|