2i2f: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of LmNADK1== | |||
<StructureSection load='2i2f' size='340' side='right'caption='[[2i2f]], [[Resolution|resolution]] 1.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2i2f]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Listeria_monocytogenes Listeria monocytogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2I2F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2I2F FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2i2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2i2f OCA], [https://pdbe.org/2i2f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2i2f RCSB], [https://www.ebi.ac.uk/pdbsum/2i2f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2i2f ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/NADK1_LISMO NADK1_LISMO] Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP.[HAMAP-Rule:MF_00361]<ref>PMID:17686780</ref> <ref>PMID:22608967</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/i2/2i2f_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2i2f ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Here we describe the crystal structures of the NAD kinase (LmNADK1) from Listeria monocytogenes in complex with its substrate NAD, its product NADP, or two synthesized NAD mimics. We identified one of the NAD mimics, di-adenosine diphosphate, as a new substrate for LmNADK1, whereas we showed that the closely related compound di-5'-thioadenosine is a novel non-natural inhibitor for this enzyme. These structures suggest a mechanism involving substrate-assisted catalysis. Indeed, sequence/structure comparison and directed mutagenesis have previously shown that NAD kinases (NADKs) and the distantly related 6-phosphofructokinases share the same catalytically important GGDGT motif. However, in this study we have shown that these enzymes use the central aspartate of this motif differently. Although this acidic residue chelates the catalytic Mg(2+) ion in 6-phosphofructokinases, it activates the phospho-acceptor (NAD) in NADKs. Sequence/structure comparisons suggest that the role of this aspartate would be conserved in NADKs and the related sphingosine and diacylglycerol kinases. | |||
NAD kinases use substrate-assisted catalysis for specific recognition of NAD.,Poncet-Montange G, Assairi L, Arold S, Pochet S, Labesse G J Biol Chem. 2007 Nov 23;282(47):33925-34. Epub 2007 Aug 8. PMID:17686780<ref>PMID:17686780</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2i2f" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
[[ | *[[NAD kinase|NAD kinase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Listeria monocytogenes]] | [[Category: Listeria monocytogenes]] | ||
[[Category: Arold | [[Category: Arold S]] | ||
[[Category: Assairi | [[Category: Assairi L]] | ||
[[Category: Labesse | [[Category: Labesse G]] | ||
[[Category: Pochet | [[Category: Pochet S]] | ||
[[Category: Poncet-Montange | [[Category: Poncet-Montange G]] | ||
Latest revision as of 13:05, 30 August 2023
Crystal structure of LmNADK1Crystal structure of LmNADK1
Structural highlights
FunctionNADK1_LISMO Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP.[HAMAP-Rule:MF_00361][1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHere we describe the crystal structures of the NAD kinase (LmNADK1) from Listeria monocytogenes in complex with its substrate NAD, its product NADP, or two synthesized NAD mimics. We identified one of the NAD mimics, di-adenosine diphosphate, as a new substrate for LmNADK1, whereas we showed that the closely related compound di-5'-thioadenosine is a novel non-natural inhibitor for this enzyme. These structures suggest a mechanism involving substrate-assisted catalysis. Indeed, sequence/structure comparison and directed mutagenesis have previously shown that NAD kinases (NADKs) and the distantly related 6-phosphofructokinases share the same catalytically important GGDGT motif. However, in this study we have shown that these enzymes use the central aspartate of this motif differently. Although this acidic residue chelates the catalytic Mg(2+) ion in 6-phosphofructokinases, it activates the phospho-acceptor (NAD) in NADKs. Sequence/structure comparisons suggest that the role of this aspartate would be conserved in NADKs and the related sphingosine and diacylglycerol kinases. NAD kinases use substrate-assisted catalysis for specific recognition of NAD.,Poncet-Montange G, Assairi L, Arold S, Pochet S, Labesse G J Biol Chem. 2007 Nov 23;282(47):33925-34. Epub 2007 Aug 8. PMID:17686780[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|