2hhf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2hhf.jpg|left|200px]]
<!--
The line below this paragraph, containing "STRUCTURE_2hhf", creates the "Structure Box" on the page.
You may change the PDB parameter (which sets the PDB file loaded into the applet)
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
or leave the SCENE parameter empty for the default display.
-->
{{STRUCTURE_2hhf|  PDB=2hhf  |  SCENE=  }}
'''X-ray crystal structure of oxidized human mitochondrial branched chain aminotransferase (hBCATm)'''


==X-ray crystal structure of oxidized human mitochondrial branched chain aminotransferase (hBCATm)==
<StructureSection load='2hhf' size='340' side='right'caption='[[2hhf]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2hhf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HHF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HHF FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=OCS:CYSTEINESULFONIC+ACID'>OCS</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene>, <scene name='pdbligand=TYO:(4Z,6E)-2-AMINO-7-HYDROPEROXY-4-[(E)-2-HYDROXYVINYL]HEPTA-4,6-DIENOIC+ACID'>TYO</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hhf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hhf OCA], [https://pdbe.org/2hhf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hhf RCSB], [https://www.ebi.ac.uk/pdbsum/2hhf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hhf ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/BCAT2_HUMAN BCAT2_HUMAN] Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. May also function as a transporter of branched chain alpha-keto acids.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hh/2hhf_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hhf ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Mammalian branched chain aminotransferases (BCATs) have a unique CXXC center. Kinetic and structural studies of three CXXC center mutants (C315A, C318A, and C315A/C318A) of human mitochondrial (hBCATm) isozyme and the oxidized hBCATm enzyme (hBCATm-Ox) have been used to elucidate the role of this center in hBCATm catalysis. X-ray crystallography revealed that the CXXC motif, through its network of hydrogen bonds, plays a crucial role in orienting the substrate optimally for catalysis. In all structures, there were changes in the structure of the beta-turn preceding the CXXC motif when compared with wild type protein. The N-terminal loop between residues 15 and 32 is flexible in the oxidized and mutant enzymes, the disorder greater in the oxidized protein. Disordering of the N-terminal loop disrupts the integrity of the side chain binding pocket, particularly for the branched chain side chain, less so for the dicarboxylate substrate side chain. The kinetic studies of the mutant and oxidized enzymes support the structural analysis. The kinetic results showed that the predominant effect of oxidation was on the second half-reaction rather than the first half-reaction. The oxidized enzyme was completely inactive, whereas the mutants showed limited activity. Model building of the second half-reaction substrate alpha-ketoisocaproate in the pyridoxamine 5'-phosphate-hBCATm structure suggests that disruption of the CXXC center results in altered substrate orientation and deprotonation of the amino group of pyridoxamine 5'-phosphate, which inhibits catalysis.


==Overview==
Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis.,Yennawar NH, Islam MM, Conway M, Wallin R, Hutson SM J Biol Chem. 2006 Dec 22;281(51):39660-71. Epub 2006 Oct 18. PMID:17050531<ref>PMID:17050531</ref>
Mammalian branched chain aminotransferases (BCATs) have a unique CXXC center. Kinetic and structural studies of three CXXC center mutants (C315A, C318A, and C315A/C318A) of human mitochondrial (hBCATm) isozyme and the oxidized hBCATm enzyme (hBCATm-Ox) have been used to elucidate the role of this center in hBCATm catalysis. X-ray crystallography revealed that the CXXC motif, through its network of hydrogen bonds, plays a crucial role in orienting the substrate optimally for catalysis. In all structures, there were changes in the structure of the beta-turn preceding the CXXC motif when compared with wild type protein. The N-terminal loop between residues 15 and 32 is flexible in the oxidized and mutant enzymes, the disorder greater in the oxidized protein. Disordering of the N-terminal loop disrupts the integrity of the side chain binding pocket, particularly for the branched chain side chain, less so for the dicarboxylate substrate side chain. The kinetic studies of the mutant and oxidized enzymes support the structural analysis. The kinetic results showed that the predominant effect of oxidation was on the second half-reaction rather than the first half-reaction. The oxidized enzyme was completely inactive, whereas the mutants showed limited activity. Model building of the second half-reaction substrate alpha-ketoisocaproate in the pyridoxamine 5'-phosphate-hBCATm structure suggests that disruption of the CXXC center results in altered substrate orientation and deprotonation of the amino group of pyridoxamine 5'-phosphate, which inhibits catalysis.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
2HHF is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HHF OCA].
</div>
<div class="pdbe-citations 2hhf" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis., Yennawar NH, Islam MM, Conway M, Wallin R, Hutson SM, J Biol Chem. 2006 Dec 22;281(51):39660-71. Epub 2006 Oct 18. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17050531 17050531]
*[[Aminotransferase 3D structures|Aminotransferase 3D structures]]
[[Category: Branched-chain-amino-acid transaminase]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Hutson, S M.]]
[[Category: Hutson SM]]
[[Category: Yennawar, N H.]]
[[Category: Yennawar NH]]
[[Category: D-aminoacid aminotransferase-like plp-dependent enzyme]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May  4 06:17:54 2008''

Latest revision as of 12:58, 30 August 2023

X-ray crystal structure of oxidized human mitochondrial branched chain aminotransferase (hBCATm)X-ray crystal structure of oxidized human mitochondrial branched chain aminotransferase (hBCATm)

Structural highlights

2hhf is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BCAT2_HUMAN Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. May also function as a transporter of branched chain alpha-keto acids.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Mammalian branched chain aminotransferases (BCATs) have a unique CXXC center. Kinetic and structural studies of three CXXC center mutants (C315A, C318A, and C315A/C318A) of human mitochondrial (hBCATm) isozyme and the oxidized hBCATm enzyme (hBCATm-Ox) have been used to elucidate the role of this center in hBCATm catalysis. X-ray crystallography revealed that the CXXC motif, through its network of hydrogen bonds, plays a crucial role in orienting the substrate optimally for catalysis. In all structures, there were changes in the structure of the beta-turn preceding the CXXC motif when compared with wild type protein. The N-terminal loop between residues 15 and 32 is flexible in the oxidized and mutant enzymes, the disorder greater in the oxidized protein. Disordering of the N-terminal loop disrupts the integrity of the side chain binding pocket, particularly for the branched chain side chain, less so for the dicarboxylate substrate side chain. The kinetic studies of the mutant and oxidized enzymes support the structural analysis. The kinetic results showed that the predominant effect of oxidation was on the second half-reaction rather than the first half-reaction. The oxidized enzyme was completely inactive, whereas the mutants showed limited activity. Model building of the second half-reaction substrate alpha-ketoisocaproate in the pyridoxamine 5'-phosphate-hBCATm structure suggests that disruption of the CXXC center results in altered substrate orientation and deprotonation of the amino group of pyridoxamine 5'-phosphate, which inhibits catalysis.

Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis.,Yennawar NH, Islam MM, Conway M, Wallin R, Hutson SM J Biol Chem. 2006 Dec 22;281(51):39660-71. Epub 2006 Oct 18. PMID:17050531[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yennawar NH, Islam MM, Conway M, Wallin R, Hutson SM. Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis. J Biol Chem. 2006 Dec 22;281(51):39660-71. Epub 2006 Oct 18. PMID:17050531 doi:10.1074/jbc.M607552200

2hhf, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA