2gq3: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='2gq3' size='340' side='right'caption='[[2gq3]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='2gq3' size='340' side='right'caption='[[2gq3]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2gq3]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[2gq3]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GQ3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GQ3 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=COA:COENZYME+A'>COA</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MLT:D-MALATE'>MLT</scene | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=COA:COENZYME+A'>COA</scene>, <scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MLT:D-MALATE'>MLT</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gq3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gq3 OCA], [https://pdbe.org/2gq3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gq3 RCSB], [https://www.ebi.ac.uk/pdbsum/2gq3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gq3 ProSAT], [https://www.topsan.org/Proteins/TBSGC/2gq3 TOPSAN]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gq3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gq3 OCA], [https://pdbe.org/2gq3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gq3 RCSB], [https://www.ebi.ac.uk/pdbsum/2gq3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gq3 ProSAT], [https://www.topsan.org/Proteins/TBSGC/2gq3 TOPSAN]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/MASZ_MYCTU MASZ_MYCTU] Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl-CoA) and glyoxylate to form malate and CoA (By similarity).[HAMAP-Rule:MF_00641] | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 39: | Line 38: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Mycobacterium tuberculosis]] | ||
[[Category: Anstrom | [[Category: Anstrom DM]] | ||
[[Category: Remington | [[Category: Remington SJ]] | ||
Latest revision as of 12:46, 30 August 2023
mycobacterium tuberculosis malate synthase in complex with magnesium, malate, and coenzyme Amycobacterium tuberculosis malate synthase in complex with magnesium, malate, and coenzyme A
Structural highlights
FunctionMASZ_MYCTU Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl-CoA) and glyoxylate to form malate and CoA (By similarity).[HAMAP-Rule:MF_00641] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedEnzymes of the glyoxylate shunt have been implicated as virulence factors in several pathogenic organisms, notably Mycobacterium tuberculosis and Candida albicans. Malate synthase has thus emerged as a promising target for design of anti-microbial agents. For this effort, it is essential to have reliable models for enzyme:substrate complexes. A 2.7 Angstroms resolution crystal structure for M. tuberculosis malate synthase in the ternary complex with magnesium, malate, and coenzyme A has been previously described. However, some unusual aspects of malate and Mg(++) binding prompted an independent determination of the structure at 2.3 Angstroms resolution, in the presence of saturating concentrations of malate. The electron density map of the complex reveals the position and conformation of coenzyme A to be unchanged from that found in the previous study. However, the coordination of Mg(++) and orientation of bound malate within the active site are different. The revised position of bound malate is consistent with a reaction mechanism that does not require reorientation of the electrophilic substrate during the catalytic cycle, while the revised Mg(++) coordination is octahedral, as expected. The results should be useful in the design of malate synthase inhibitors. The product complex of M. tuberculosis malate synthase revisited.,Anstrom DM, Remington SJ Protein Sci. 2006 Aug;15(8):2002-7. PMID:16877713[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|